Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE Trans Biomed Circuits Syst ; 16(5): 779-792, 2022 10.
Article in English | MEDLINE | ID: mdl-35830413

ABSTRACT

This work presents an eyeblink system that detects magnets placed on the eyelid via integrated magnetic sensors and an analogue circuit on an eyewear frame (without a glass lens). The eyelid magnets were detected using tunnelling magnetoresistance (TMR) bridge sensors with a sensitivity of 14 mV/V/Oe and were positioned centre-right and centre-left of the eyewear frame. Each eye side has a single TMR sensor wired to a single circuit, where the signal was filtered (<0.5 Hz and >30 Hz) and amplified to detect the weak magnetic field produced by the 3-millimetre (mm) diameter and 0.5 mm thickness N42 Neodymium magnets attached to a medical tape strip, for the adult-age demographic. Each eyeblink was repeated by a trigger command (right eyeblink) followed by the appropriate command, right, left or both eyeblinks. The eyeblink gesture system has shown repeatability, resulting in blinking classification based on the analogue signal amplitude threshold. As a result, the signal can be scaled and classified as well as, integrated with a Bluetooth module in real-time. This will enable end-users to connect to various other Bluetooth enabled devices for wireless assistive technologies. The eyeblink system was tested by 14 participants via a stimuli-based game. Within an average time of 185-seconds, the system demonstrated a group mean accuracy of 72% for 40 commands. Moreover, the maximum information transfer rate (ITR) of the participants was 35.95 Bits per minute.


Subject(s)
Blinking , Wearable Electronic Devices , Adult , Humans , Gestures , Eyelids
2.
IEEE Trans Biomed Circuits Syst ; 14(6): 1299-1310, 2020 12.
Article in English | MEDLINE | ID: mdl-32991289

ABSTRACT

The tracking of eye gesture movements using wearable technologies can undoubtedly improve quality of life for people with mobility and physical impairments by using spintronic sensors based on the tunnel magnetoresistance (TMR) effect in a human-machine interface. Our design involves integrating three TMR sensors on an eyeglass frame for detecting relative movement between the sensor and tiny magnets embedded in an in-house fabricated contact lens. Using TMR sensors with the sensitivity of 11 mV/V/Oe and ten <1 mm3 embedded magnets within a lens, an eye gesture system was implemented with a sampling frequency of up to 28 Hz. Three discrete eye movements were successfully classified when a participant looked up, right or left using a threshold-based classifier. Moreover, our proof-of-concept real-time interaction system was tested on 13 participants, who played a simplified Tetris game using their eye movements. Our results show that all participants were successful in completing the game with an average accuracy of 90.8%.


Subject(s)
Communication Aids for Disabled , Eye Movements/physiology , Eye-Tracking Technology/instrumentation , Wireless Technology/instrumentation , Gestures , Humans , Magnetics , Man-Machine Systems , Signal Processing, Computer-Assisted/instrumentation , Wearable Electronic Devices
SELECTION OF CITATIONS
SEARCH DETAIL
...