Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Cell Rep ; 42(10): 113173, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37742189

ABSTRACT

G protein-coupled receptors (GPCRs) convert extracellular stimuli into intracellular signaling by coupling to heterotrimeric G proteins of four classes: Gi/o, Gq, Gs, and G12/13. However, our understanding of the G protein selectivity of GPCRs is incomplete. Here, we quantitatively measure the enzymatic activity of GPCRs in living cells and reveal the G protein selectivity of 124 GPCRs with the exact rank order of their G protein preference. Using this information, we establish a classification of GPCRs by functional selectivity, discover the existence of a G12/13-coupled receptor, G15-coupled receptors, and a variety of subclasses for Gi/o-, Gq-, and Gs-coupled receptors, culminating in development of the predictive algorithm of G protein selectivity. We further identify the structural determinants of G protein selectivity, allowing us to synthesize non-existent GPCRs with de novo G protein selectivity and efficiently identify putative pathogenic variants.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , Receptors, G-Protein-Coupled/metabolism , GTP-Binding Proteins/metabolism , Signal Transduction/physiology , Carrier Proteins/metabolism , Algorithms
2.
Biochem J ; 479(8): 883-900, 2022 04 29.
Article in English | MEDLINE | ID: mdl-35383830

ABSTRACT

G-protein-coupled receptors (GPCRs) play an important role in sensing various extracellular stimuli, such as neurotransmitters, hormones, and tastants, and transducing the input information into the cell. While the human genome encodes more than 800 GPCR genes, only four Gα-proteins (Gαs, Gαi/o, Gαq/11, and Gα12/13) are known to couple with GPCRs. It remains unclear how such divergent GPCR information is translated into the downstream G-protein signaling dynamics. To answer this question, we report a live-cell fluorescence imaging system for monitoring GPCR downstream signaling dynamics. Genetically encoded biosensors for cAMP, Ca2+, RhoA, and ERK were selected as markers for GPCR downstream signaling, and were stably expressed in HeLa cells. GPCR was further transiently overexpressed in the cells. As a proof-of-concept, we visualized GPCR signaling dynamics of five dopamine receptors and 12 serotonin receptors, and found heterogeneity between GPCRs and between cells. Even when the same Gα proteins were known to be coupled, the patterns of dynamics in GPCR downstream signaling, including the signal strength and duration, were substantially distinct among GPCRs. These results suggest the importance of dynamical encoding in GPCR signaling.


Subject(s)
GTP-Binding Proteins , Receptors, G-Protein-Coupled , GTP-Binding Proteins/genetics , GTP-Binding Proteins/metabolism , HeLa Cells , Humans , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL