Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 144
Filter
1.
Nanomaterials (Basel) ; 14(13)2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38998753

ABSTRACT

One of the primary risk factors for implant failure is thought to be implant-related infections during the early healing phase. Developing coatings with cell stimulatory behaviour and bacterial adhesion control is still difficult for bone implants. This study proposes an approach for one-step deposition of biocompatible and antimicrobial Cu-doped TiO2 coatings via glow-discharge sputtering of a mosaic target. During the deposition, the bias of the Ti6Al4V substrates was changed. Structure examination, phase analysis, and surface morphology were carried out using X-ray diffraction (XRD) analysis, scanning electron microscopy (SEM), atomic force microscopy (AFM), and X-ray photoelectron spectroscopy (XPS). The hardness values and hydrophilic and corrosion performance were also evaluated together with cytocompatible and antibacterial examinations against E. coli and S. aureus. The results show great chemical and phase control of the bias identifying rutile, anatase, CuO, or ternary oxide phases. It was found that by increasing the substrate bias from 0 to -50 V the Cu content increased from 15.3 up to 20.7 at% while at a high bias of -100 V, the copper content reduced to 3 at%. Simultaneously, apart from the Cu2+ state, Cu1+ is also found in the biased samples. Compared with the bare alloy, the hardness, the water contact angle and corrosion resistance of the biased coatings increased. According to an assessment of in vitro cytocompatibility, all coatings were found to be nontoxic to MG-63 osteoblast cells over the time studied. Copper release and cell-surface interactions generated an antibacterial effect against E. coli and S. aureus strains. The -50 V biased coating combined the most successful results in inhibiting bacterial growth and eliciting the proper responses from osteoblastic cells because of its phase composition, electrochemical stability, hydrophilicity, improved substrate adhesion, and surface roughness. Using this novel surface modification approach, we achieved multifunctionality through controlled copper content and oxide phase composition in the sputtered films.

2.
Nat Commun ; 15(1): 5233, 2024 Jun 19.
Article in English | MEDLINE | ID: mdl-38898031

ABSTRACT

Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers. We demonstrate that endothelial FOXF1 enhancers are autoactivated, whereas mesenchymal FOXF1 enhancers are regulated by EBF1 and GLI1. The cell-specificity of FOXF1 enhancers is validated by disrupting these enhancers in mouse embryonic stem cells using CRISPR/Cpf1 genome editing followed by lineage-tracing of mutant embryonic stem cells in mouse embryos using blastocyst complementation. This study resolves an important clinical question why frequent non-coding FOXF1 deletions that interfere with endothelial and mesenchymal enhancers can lead to the disease.


Subject(s)
Enhancer Elements, Genetic , Forkhead Transcription Factors , Mesoderm , Persistent Fetal Circulation Syndrome , Forkhead Transcription Factors/genetics , Forkhead Transcription Factors/metabolism , Animals , Humans , Persistent Fetal Circulation Syndrome/genetics , Persistent Fetal Circulation Syndrome/pathology , Persistent Fetal Circulation Syndrome/metabolism , Mice , Enhancer Elements, Genetic/genetics , Mesoderm/metabolism , Mesoderm/embryology , Lung/pathology , Endothelial Cells/metabolism , Zinc Finger Protein GLI1/genetics , Zinc Finger Protein GLI1/metabolism , Embryonic Stem Cells/metabolism , Pulmonary Alveoli/abnormalities
3.
Front Cell Dev Biol ; 12: 1394098, 2024.
Article in English | MEDLINE | ID: mdl-38694819

ABSTRACT

Radiation-induced lung injury (RILI) is a common complication of anti-cancer treatments for thoracic and hematologic malignancies. Bone marrow (BM) transplantation restores hematopoietic cell lineages in cancer patients. However, it is ineffective in improving lung repair after RILI due to the paucity of respiratory progenitors in BM transplants. In the present study, we used blastocyst injection to create mouse-rat chimeras, these are artificial animals in which BM is enriched with mouse-derived progenitor cells. FACS-sorted mouse BM cells from mouse-rat chimeras were transplanted into lethally irradiated syngeneic mice, and the contribution of donor cells to the lung tissue was examined using immunostaining and flow cytometry. Donor BM cells provided long-term contributions to all lung-resident hematopoietic cells which includes alveolar macrophages and dendritic cells. Surprisingly, donor BM cells also contributed up to 8% in pulmonary endothelial cells and stromal cells after RILI. To identify respiratory progenitors in donor BM, we performed single-cell RNA sequencing (scRNAseq). Compared to normal mouse BM, increased numbers of hematopoietic progenitors were found in the BM of mouse-rat chimeras. We also identified unique populations of hemangioblast-like progenitor cells expressing Hes1, Dntt and Ebf1, along with mesenchymal stromal cells expressing Cpox, Blvrb and Ermap that were absent or ultra-rare in the normal mouse BM. In summary, by using rats as "bioreactors", we created a unique mouse BM cell transplant that contributes to multiple respiratory cell types after RILI. Interspecies chimeras have promise for future generations of BM transplants enriched in respiratory progenitor cells.

4.
Am J Physiol Lung Cell Mol Physiol ; 327(1): L114-L125, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38772902

ABSTRACT

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs. Several studies reported the successful application of macrophage therapy in accelerating the regenerative capacity of damaged tissues and enhancing the therapeutic efficacy of other transplantable progenitor cells. In the present study, we explored the efficacy of combined cell therapy with EPC and resident alveolar macrophages (rAM) in hyperoxia-induced BPD mouse model. rAM and EPC were purified from neonatal mouse lungs and were used for adoptive transfer to the recipient neonatal mice exposed to hyperoxia. Adoptive transfer of rAM alone did not result in engraftment of donor rAM into the lung tissue but increased the mRNA level and protein concentration of proangiogenic CXCL12 chemokine in recipient mouse lungs. Depletion of rAM by chlodronate-liposomes decreased the retention of donor EPC after their transplantation into hyperoxia-injured lungs. Adoptive transfer of rAM in combination with EPC enhanced the therapeutic efficacy of EPC as evidenced by increased retention of EPC, increased capillary density, improved arterial oxygenation, and alveolarization in hyperoxia-injured lungs. Dual therapy with EPC and rAM has promise in human BPD.NEW & NOTEWORTHY Recent studies demonstrated that transplantation of lung-resident endothelial progenitor cells (EPC) is an effective therapy in mouse model of bronchopulmonary dysplasia (BPD). However, key factors regulating the efficacy of EPC are unknown. Herein, we demonstrate that transplantation of tissue-resident alveolar macrophages (rAM) increases CXCL12 expression in neonatal mouse lungs. rAM are required for retention of donor EPC in hyperoxia-injured lungs. Co-transplantation of rAM and EPC improves the efficacy of EPC therapy in mouse BPD model.


Subject(s)
Bronchopulmonary Dysplasia , Chemokine CXCL12 , Disease Models, Animal , Endothelial Progenitor Cells , Hyperoxia , Macrophages, Alveolar , Animals , Bronchopulmonary Dysplasia/therapy , Bronchopulmonary Dysplasia/pathology , Endothelial Progenitor Cells/transplantation , Endothelial Progenitor Cells/metabolism , Macrophages, Alveolar/metabolism , Mice , Chemokine CXCL12/metabolism , Hyperoxia/therapy , Mice, Inbred C57BL , Animals, Newborn , Lung/pathology , Lung/metabolism , Humans , Adoptive Transfer/methods , Stem Cell Transplantation/methods
5.
EMBO Mol Med ; 16(5): 1063-1090, 2024 May.
Article in English | MEDLINE | ID: mdl-38589650

ABSTRACT

Cancer cells re-program normal lung endothelial cells (EC) into tumor-associated endothelial cells (TEC) that form leaky vessels supporting carcinogenesis. Transcriptional regulators that control the reprogramming of EC into TEC are poorly understood. We identified Forkhead box F1 (FOXF1) as a critical regulator of EC-to-TEC transition. FOXF1 was highly expressed in normal lung vasculature but was decreased in TEC within non-small cell lung cancers (NSCLC). Low FOXF1 correlated with poor overall survival of NSCLC patients. In mice, endothelial-specific deletion of FOXF1 decreased pericyte coverage, increased vessel permeability and hypoxia, and promoted lung tumor growth and metastasis. Endothelial-specific overexpression of FOXF1 normalized tumor vessels and inhibited the progression of lung cancer. FOXF1 deficiency decreased Wnt/ß-catenin signaling in TECs through direct transcriptional activation of Fzd4. Restoring FZD4 expression in FOXF1-deficient TECs through endothelial-specific nanoparticle delivery of Fzd4 cDNA rescued Wnt/ß-catenin signaling in TECs, normalized tumor vessels and inhibited the progression of lung cancer. Altogether, FOXF1 increases tumor vessel stability, and inhibits lung cancer progression by stimulating FZD4/Wnt/ß-catenin signaling in TECs. Nanoparticle delivery of FZD4 cDNA has promise for future therapies in NSCLC.


Subject(s)
Endothelial Cells , Forkhead Transcription Factors , Frizzled Receptors , Lung Neoplasms , Animals , Frizzled Receptors/metabolism , Frizzled Receptors/genetics , Forkhead Transcription Factors/metabolism , Forkhead Transcription Factors/genetics , Lung Neoplasms/pathology , Lung Neoplasms/genetics , Lung Neoplasms/blood supply , Lung Neoplasms/metabolism , Humans , Mice , Endothelial Cells/metabolism , Endothelial Cells/pathology , Carcinoma, Non-Small-Cell Lung/pathology , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Carcinoma, Non-Small-Cell Lung/blood supply , Wnt Signaling Pathway , Disease Progression , Neovascularization, Pathologic/genetics
6.
Am J Respir Crit Care Med ; 210(2): 167-177, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-38507610

ABSTRACT

Rationale: Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved. The mouse lung has never been generated in a rat. Objective: We sought to generate the mouse lung in a rat. Methods: Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas9 genome editing was used to disrupt the Nkx2-1 gene in rat one-cell zygotes. Interspecies mouse-rat chimeras were produced by injection of wild-type mouse ESCs into Nkx2-1-deficient rat embryos with lung agenesis. The contribution of mouse ESCs to the lung tissue was examined by immunostaining, flow cytometry, and single-cell RNA sequencing. Measurements and Main Results: Peripheral pulmonary and thyroid tissues were absent in rat embryos after CRISPR-Cas9-mediated disruption of the Nkx2-1 gene. Complementation of rat Nkx2-1-/- blastocysts with mouse ESCs restored pulmonary and thyroid structures in mouse-rat chimeras, leading to a near-99% contribution of ESCs to all respiratory cell lineages. Epithelial, endothelial, hematopoietic, and stromal cells in ESC-derived lungs were highly differentiated and exhibited lineage-specific gene signatures similar to those of respiratory cells from the normal mouse lung. Analysis of receptor-ligand interactions revealed normal signaling networks between mouse ESC-derived respiratory cells differentiated in a rat. Conclusions: A combination of CRISPR-Cas9 genome editing and blastocyst complementation was used to produce mouse lungs in rats, making an important step toward future generations of human lungs using large animals as "bioreactors."


Subject(s)
CRISPR-Cas Systems , Gene Editing , Lung , Animals , Rats , Gene Editing/methods , Lung/embryology , Mice , Thyroid Nuclear Factor 1/genetics , Embryonic Stem Cells
7.
Cancers (Basel) ; 16(4)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38398147

ABSTRACT

Forkhead box M1 (FOXM1) is a transcription factor in the forkhead (FOX) family, which is required for cellular proliferation in normal and neoplastic cells. FOXM1 is highly expressed in many different cancers, and its expression is associated with a higher tumor stage and worse patient-related outcomes. Abnormally high expression of FOXM1 in cancers compared to normal tissue makes FOXM1 an attractive target for pharmacological inhibition. FOXM1-inhibiting agents and specific FOXM1-targeted small-molecule inhibitors have been developed in the lab and some of them have shown promising efficacy and safety profiles in mouse models. While the future goal is to translate FOXM1 inhibitors to clinical trials, potential synergistic drug combinations can maximize anti-tumor efficacy while minimizing off-target side effects. Hence, we discuss the rationale and efficacy of all previously studied drug combinations with FOXM1 inhibitors for cancer therapies.

8.
Bioact Mater ; 31: 1-17, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37593494

ABSTRACT

Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body. In the present study, we successfully solved this problem by developing non-toxic poly(ß-amino) ester (PBAE) nanoparticles with specific structure design and fluorinated modification for high efficiency and specific delivery of nucleic acids to the pulmonary endothelial cells. After intravenous administration, the PBAE nanoparticles were capable of delivering non-integrating DNA plasmids to lung microvascular endothelial cells but not to other lung cell types. IVIS whole body imaging and flow cytometry demonstrated that DNA plasmid were functional in the lung endothelial cells but not in endothelial cells of other organs. Fluorination of PBAE was required for lung endothelial cell-specific targeting. Hematologic analysis and liver and kidney metabolic panels demonstrated the lack of toxicity in experimental mice. Thus, fluorinated PBAE nanoparticles can be an ideal vehicle for gene therapy targeting lung microvascular endothelium in pulmonary vascular disorders.

9.
Microbiol Resour Announc ; 12(12): e0070823, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-37943080

ABSTRACT

Some strains of Mycolicibacterium possess high sterol-oxidizing activity and are used in the pharmaceutical industry for the production of steroid precursors. Herein, we report a draft genome sequence of the soil-dwelling Mycolicibacterium fortuitum DVD-1301 isolated in the floodplain of the river Oka. The genome contains a full set of steroid catabolic genes.

10.
Microorganisms ; 11(11)2023 Nov 07.
Article in English | MEDLINE | ID: mdl-38004731

ABSTRACT

Microbial 1(2)-dehydrogenation of 3-ketosteroids is an important basis for the production of many steroid pharmaceuticals and synthons. When using the wild-type strains for whole cell catalysis, the undesirable reduction of the 20-carbonyl group, or 1(2)-hydrogenation, was observed. In this work, the recombinant strains of Mycolicibacterium neoaurum and Mycolicibacterium smegmatis were constructed with blocked endogenous activity of 3-ketosteroid-9α-hydroxylase, 3-ketosteroid-1(2)-dehydrogenase (3-KSD), and expressing 3-KSD encoded by the gene KR76_27125 (kstD2NS) from Nocardioides simplex VKM Ac-2033D. The in vivo activity of the obtained recombinant strains against phytosterol, 6α-methyl-hydrocortisone, and hydrocortisone was studied. When using M. smegmatis as the host strain, the 1(2)-dehydrogenation activity of the constructed recombinant cells towards hydrocortisone was noticeably higher compared to those on the platform of M. neoaurum. A comparison of the strengths of inducible acetamidase and constitutive hsp60 promoters in M. smegmatis provided comparable results. Hydrocortisone biotransformation by M. smegmatis BD/pMhsp_k expressing kstD2NS resulted in 95.4% prednisolone yield, and the selectivity preferred that for N. simplex. Mycolicibacteria showed increased hydrocortisone degradation at 35 °C compared to 30 °C. The presence of endogenous steroid catabolism in Mycolicibacterium hosts does not seem to confer an advantage for the functioning of KstD2NS. The results allow for the evaluation of the prospects for the development of simple technological methods for the selective 1(2)-dehydrogenation of 3-ketosteroids by growing bacterial cells.

11.
J Pers Disord ; 37(5): 508-524, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37903023

ABSTRACT

Interpersonal and trust-related difficulties are central features of borderline personality disorder (BPD). In this study, we applied script-driven betrayal imagery to evoke mistrustful behavior in a social reinforcement learning task. In 21 BPD and 20 healthy control (HC) participants, we compared this approach to the standard confederate paradigm used in research studies. The script-driven imagery evoked a transient increase in negative affect and also decreased trusting behavior to a similar degree in both groups. Across conditions, we also replicated previously reported between-group differences in negative affect (increased in BPD) and task behavior (more sensitive to social cues in BPD). These results support the validity of script-driven imagery as an alternative social task stimulus. This script-driven imagery approach is appealing for clinical research studies on reinforcement learning because it eliminates deception, scales easily, and evokes disorder-specific states of social difficulty.


Subject(s)
Borderline Personality Disorder , Trust , Humans , Betrayal
12.
J Psychiatr Pract ; 29(5): 384-389, 2023 09 01.
Article in English | MEDLINE | ID: mdl-37678369

ABSTRACT

Involuntary celibates ("incels") refers to a group consisting mostly of heterosexual men that exists predominantly in online spaces. These men are united by a belief that they are victimized by a postfeminist society, leading to an inability to engage in sexual intimacy with women. Recent acts of mass violence have been linked to self-identified incels, leading to an increased need for awareness of incel worldviews, argot, and demographics among psychiatrists. Limited research exists to describe this heterogenous group, with existing data suggesting higher rates of depression, anxiety, and suicidal ideation within the demographic. This column reviews the incel worldview, existing literature, how to identify an individual with incel beliefs based on vocabulary and internet usage, and treatment modalities.


Subject(s)
Mental Health , Sexual Behavior , Male , Humans , Female , Anxiety , Anxiety Disorders , Suicidal Ideation
13.
J Dent Educ ; 87(12): 1645-1653, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37752848

ABSTRACT

PURPOSE/OBJECTIVES: The purpose of this 2021 study was to explore experiences acquired from a school-based sealant program (SBSP), to improve understanding of the relationship between SBSP and dental hygiene (DH) student outcomes, and to inform institutions of the value of educational experiences aiming to reduce disparities in access to dental care. METHODS: University of Missouri Kansas City School of Dentistry Senior DH students complete a community engaged course which includes participation in community projects and clinical activities targeting Kansas City's urban and surrounding rural environments. The SBSP is a component of this course. This investigation utilized a qualitative methodology to examine SBSP experiences through the experience of the primary investigator, on-site dentist, and DH students involved in the program. RESULTS: Data analysis resulted in consensus of five synthesized conceptual models and twenty-three emergent themes. The conceptual models include: competence, roles and responsibilities, social justice, value added, and lessons learned. CONCLUSION: Based on triangulated results, SBSPs improve access to care for children, save dental costs, and provide essential experiences for DH students.


Subject(s)
Oral Hygiene , Students , Child , Humans , Schools , Pit and Fissure Sealants/therapeutic use
14.
Methods Mol Biol ; 2704: 291-312, 2023.
Article in English | MEDLINE | ID: mdl-37642852

ABSTRACT

Engineered mutants of Mycolicibacterium spp. are known producers of valuable steroid synthons with C19 or C22 skeleton. Here we describe a method for site-directed mutagenesis of Mycolicibacterium neoaurum strains, bioconversion from phytosterol, and selective purification of C23 steroid 24-norchol-4-ene-3,22-dione (24-NCED) and C22 steroid 20-hydroxymethylpregn-4-ene-3-one (20-HMP). The yields of crystalline products with 95% purity by the method here described are 2.74 ± 0.085 g for 24-NCED and 1.42 ± 0.085 g for 20-HMP from 10 g/L phytosterol. 20-HMP is recognized as the key precursor in chemical syntheses of pharmaceutical corticosteroids and 24-NCED is a promising synthon for the synthesis of valuable steroids and own potent biological activity.


Subject(s)
Mycobacteriaceae , Phytosterols , Mutagenesis, Site-Directed , Radiopharmaceuticals
15.
Gut Pathog ; 15(1): 37, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37496097

ABSTRACT

Vancomycin-resistant enterococci (VRЕ) are recognized as important hospital pathogens which have become common in patients admitted to the intensive care units (ICUs). The purpose of this study was to evaluate the incidence of and the risk factors for colonization with VRE among ICU patients. A total of 91 patients who had duration of hospitalization more than 48 h and without infection caused by VRE or/and other microorganisms in the ICU at University Hospital, Pleven were screened for colonization with VRE. The following data were collected: demographic characteristics, clinical information and antimicrobials use. The statistical analysis was performed using SPSS version 27.0. Colonization with VRE was established in 22 patients and one was carrying two enterococcal species. A total of 23 VRE were isolated. The univariate analysis showed that the postoperative critical cares (p < 0.001), cardiovascular diseases (p = 0.009) and the presence of an endotracheal tube (p = 0.003) were risk factors for colonization with VRE. Also, the postoperative critical cares (p = 0.021) and cardiovascular diseases (p = 0.018) were confirmed as independent risk factor for VRE acquisition by multivariate analysis. The prevalence of VRE colonization among the ICU patients was relatively high (24.2%). Risk factors for acquisition of intestinal VRE were the postoperative cares, cardiovascular diseases and the presence of an endotracheal tube.

16.
Radiother Oncol ; 186: 109741, 2023 09.
Article in English | MEDLINE | ID: mdl-37315577

ABSTRACT

BACKGROUND AND PURPOSE: Proton radiotherapy (PRT) offers potential benefits over other radiation modalities, including photon and electron radiotherapy. Increasing the rate at which proton radiation is delivered may provide a therapeutic advantage. Here, we compared the efficacy of conventional proton therapy (CONVpr) to ultrahigh dose-rate proton therapy, FLASHpr, in a mouse model of non-small cell lung cancers (NSCLC). MATERIALS AND METHODS: Mice bearing orthotopic lung tumors received thoracic radiation therapy using CONVpr (<0.05 Gy/s) and FLASHpr (>60 Gy/s) dose rates. RESULTS: Compared to CONVpr, FLASHpr was more effective in reducing tumor burden and decreasing tumor cell proliferation. Furthermore, FLASHpr was more efficient in increasing the infiltration of cytotoxic CD8+ T-lymphocytes inside the tumor while simultaneously reducing the percentage of immunosuppressive regulatory T-cells (Tregs) among T-lymphocytes. Also, compared to CONVpr, FLASHpr was more effective in decreasing pro-tumorigenic M2-like macrophages in lung tumors, while increasing infiltration of anti-tumor M1-like macrophages. Finally, FLASHpr treatment reduced expression of checkpoint inhibitors in lung tumors, indicating reduced immune tolerance. CONCLUSIONS: Our results suggest that FLASH dose-rate proton delivery modulates the immune system to improve tumor control and might thus be a promising new alternative to conventional dose rates for NSCLC treatment.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Proton Therapy , Animals , Mice , Protons , Radiotherapy Dosage , Lung Neoplasms/radiotherapy , Proton Therapy/methods , Carcinoma, Non-Small-Cell Lung/radiotherapy
17.
Front Cell Dev Biol ; 11: 1209518, 2023.
Article in English | MEDLINE | ID: mdl-37363726

ABSTRACT

Introduction: Vascular remodeling and compromised alveolar development are hallmarks of chronic pulmonary diseases such as bronchopulmonary dysplasia (BPD). Despite advances in neonatal healthcare the number of BPD cases worldwide continues to increase. One approach to overcoming the premature arrest in lung development seen in BPD is to stimulate neonatal angiogenesis via delivery and engraftment of endothelial progenitor cells (EPCs). One such population is resident to the pulmonary microvasculature and expresses both FOXF1 and c-KIT. Previous studies have shown that c-KIT+FOXF1+ EPCs are highly sensitive to elevated levels of oxygen (hyperoxia) and are decreased in premature infants with BPD and hyperoxia-induced BPD mouse models. We hypothesize that restoring EPCs through transplantation of c-KIT+FOXF1+ EPCs derived in vitro from pluripotent embryonic stem cells (ESCs), will stimulate neonatal angiogenesis and alveolarization in mice with hyperoxia-induced lung injury. Methods: Utilizing a novel ESC line with a FOXF1:GFP reporter, we generated ESC-derived c-KIT+FOXF1+ EPCs in vitro. Using a second ESC line which contains FOXF1:GFP and tdTomato transgenes, we differentiated ESCs towards c-KIT+FOXF1+ EPCs and tracked them in vivo after injection into the neonatal circulation of hyperoxia-injured mice. After a recovery period in room air conditions, we analyzed c-KIT+FOXF1+ EPC engraftment and quantified the number of resident and circulating endothelial cells, the size of alveolar spaces, and the capillary density after EPC transplantations. Results and conclusion: Herein, we demonstrate that addition of BMP9 to the directed endothelial differentiation protocol results in very efficient generation of c-KIT+FOXF1+ EPCs from pluripotent ESCs. ESC-derived c-KIT+FOXF1+ EPCs effectively engraft into the pulmonary microvasculature of hyperoxia-injured mice, promote vascular remodeling in alveoli, increase the number of resident and circulating endothelial cells, and improve alveolarization. Altogether, these results provide a proof-of-principle that cell therapy with ESC-derived c-KIT+FOXF1+ EPCs can prevent alveolar simplification in a hyperoxia-induced BPD mouse model.

19.
Nat Commun ; 14(1): 2560, 2023 05 04.
Article in English | MEDLINE | ID: mdl-37137915

ABSTRACT

Pulmonary fibrosis results from dysregulated lung repair and involves multiple cell types. The role of endothelial cells (EC) in lung fibrosis is poorly understood. Using single cell RNA-sequencing we identified endothelial transcription factors involved in lung fibrogenesis, including FOXF1, SMAD6, ETV6 and LEF1. Focusing on FOXF1, we found that FOXF1 is decreased in EC within human idiopathic pulmonary fibrosis (IPF) and mouse bleomycin-injured lungs. Endothelial-specific Foxf1 inhibition in mice increased collagen depositions, promoted lung inflammation, and impaired R-Ras signaling. In vitro, FOXF1-deficient EC increased proliferation, invasion and activation of human lung fibroblasts, and stimulated macrophage migration by secreting IL-6, TNFα, CCL2 and CXCL1. FOXF1 inhibited TNFα and CCL2 through direct transcriptional activation of Rras gene promoter. Transgenic overexpression or endothelial-specific nanoparticle delivery of Foxf1 cDNA decreased pulmonary fibrosis in bleomycin-injured mice. Nanoparticle delivery of FOXF1 cDNA can be considered for future therapies in IPF.


Subject(s)
Endothelial Cells , Idiopathic Pulmonary Fibrosis , Mice , Animals , Humans , Endothelial Cells/metabolism , Tumor Necrosis Factor-alpha/metabolism , DNA, Complementary/metabolism , Lung/metabolism , Idiopathic Pulmonary Fibrosis/chemically induced , Idiopathic Pulmonary Fibrosis/genetics , Idiopathic Pulmonary Fibrosis/metabolism , Bleomycin/toxicity , Forkhead Transcription Factors/metabolism , Fibroblasts/metabolism
20.
Microorganisms ; 11(4)2023 Mar 29.
Article in English | MEDLINE | ID: mdl-37110301

ABSTRACT

Carbapenem-resistant Acinetobacter baumannii (CRAB) is designated as an urgent public health threat, both due to its remarkable multidrug resistance and propensity for clonal spread. This study aimed to explore the phenotypic and molecular characteristics of antimicrobial resistance in CRAB isolates (n = 73) from intensive care unit (ICU) patients in two university hospitals in Bulgaria (2018-2019). The methodology included antimicrobial susceptibility testing, PCR, whole-genome sequencing (WGS), and phylogenomic analysis. The resistance rates were as follows: imipenem, 100%; meropenem, 100%; amikacin, 98.6%; gentamicin, 89%; tobramycin, 86.3%; levofloxacin, 100%; trimethoprim-sulfamethoxazole, 75.3%; tigecycline, 86.3%; colistin, 0%; and ampicillin-sulbactam, 13.7%. All isolates harbored blaOXA-51-like genes. The frequencies of distribution of other antimicrobial resistance genes (ARGs) were: blaOXA-23-like, 98.6%; blaOXA-24/40-like, 2.7%; armA, 86.3%; and sul1, 75.3%. The WGS of selected extensively drug-resistant A. baumannii (XDR-AB) isolates (n = 3) revealed the presence of OXA-23 and OXA-66 carbapenem-hydrolyzing class D ß-lactamases in all isolates, and OXA-72 carbapenemase in one of them. Various insertion sequencies, such as ISAba24, ISAba31, ISAba125, ISVsa3, IS17, and IS6100, were also detected, providing increased ability for horizontal transfer of ARGs. The isolates belonged to the widespread high-risk sequence types ST2 (n = 2) and ST636 (n = 1) (Pasteur scheme). Our results show the presence of XDR-AB isolates, carrying a variety of ARGs, in Bulgarian ICU settings, which highlights the crucial need for nationwide surveillance, especially in the conditions of extensive antibiotic usage during COVID-19.

SELECTION OF CITATIONS
SEARCH DETAIL
...