Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3913, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724558

ABSTRACT

Checkerboard lattices-where the resulting structure is open, porous, and highly symmetric-are difficult to create by self-assembly. Synthetic systems that adopt such structures typically rely on shape complementarity and site-specific chemical interactions that are only available to biomolecular systems (e.g., protein, DNA). Here we show the assembly of checkerboard lattices from colloidal nanocrystals that harness the effects of multiple, coupled physical forces at disparate length scales (interfacial, interparticle, and intermolecular) and that do not rely on chemical binding. Colloidal Ag nanocubes were bi-functionalized with mixtures of hydrophilic and hydrophobic surface ligands and subsequently assembled at an air-water interface. Using feedback between molecular dynamics simulations and interfacial assembly experiments, we achieve a periodic checkerboard mesostructure that represents a tiny fraction of the phase space associated with the polymer-grafted nanocrystals used in these experiments. In a broader context, this work expands our knowledge of non-specific nanocrystal interactions and presents a computation-guided strategy for designing self-assembling materials.

2.
J Am Chem Soc ; 146(17): 11764-11772, 2024 May 01.
Article in English | MEDLINE | ID: mdl-38625675

ABSTRACT

Direct imaging of single molecules at nanostructured interfaces is a grand challenge with potential to enable new, precise material architectures and technologies. Of particular interest are the structural morphology and spectroscopic signatures of the adsorbed molecule, where modern probes are only now being developed with the necessary spatial and energetic resolution to provide detailed information at the molecule-surface interface. Here, we directly characterize the adsorption of individual m-terphenyl isocyanide ligands on a reconstructed Au(111) surface through scanning tunneling microscopy and inelastic electron tunneling spectroscopy. The site-dependent steric pressure of the various surface features alters the vibrational fingerprints of the m-terphenyl isocyanides, which are characterized with single-molecule precision through joint experimental and theoretical approaches. This study provides molecular-level insights into the steric-pressure-enabled surface binding selectivity as well as its effect on the chemical properties of individual surface-binding ligands.

3.
ACS Macro Lett ; 12(12): 1718-1726, 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38052039

ABSTRACT

We report PEDOT:PSS brushes grafted from gold using surface-initiated atom-transfer radical polymerization (SI-ATRP) which demonstrate significantly enhanced mechanical stability against sonication and electrochemical cycling compared to spin-coated analogues as well as lower impedances than bare gold at frequencies from 0.1 to 105 Hz. These results suggest SI-ATRP PEDOT:PSS to be a promising candidate for use in microelectrodes for neural activity recording. Spin-coated, electrodeposited, and drop-cast PEDOT:PSS have already been shown to reduce impedance and improve biocompatibility of microelectrodes, but the lack of strong chemical bonds of the physisorbed polymer film to the metal leads to disintegration under required operational stresses including cyclic mechanical loads, abrasion, and electrochemical cycling. Rather than modifying the metal electrode or introducing cross-linkers or other additives to improve the stability of the polymer film, this work chemically tethers the polymer to the surface, offering a simple, scalable solution for functional bioelectronic interfaces.

4.
Nat Commun ; 13(1): 6631, 2022 11 04.
Article in English | MEDLINE | ID: mdl-36333375

ABSTRACT

Fluorescence super-resolution microscopy has, over the last two decades, been extensively developed to access deep-subwavelength nanoscales optically. Label-free super-resolution technologies however have only achieved a slight improvement compared to the diffraction limit. In this context, we demonstrate a label-free imaging method, i.e., hyperbolic material enhanced scattering (HMES) nanoscopy, which breaks the diffraction limit by tailoring the light-matter interaction between the specimens and a hyperbolic material substrate. By exciting the highly confined evanescent hyperbolic polariton modes with dark-field detection, HMES nanoscopy successfully shows a high-contrast scattering image with a spatial resolution around 80 nm. Considering the wavelength at 532 nm and detection optics with a 0.6 numerical aperture (NA) objective lens, this value represents a 5.5-fold resolution improvement beyond the diffraction limit. HMES provides capabilities for super-resolution imaging where fluorescence is not available or challenging to apply.


Subject(s)
Microscopy, Fluorescence
5.
ACS Nano ; 16(8): 12747-12754, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35943141

ABSTRACT

Organic ligands are critical in determining the physiochemical properties of inorganic nanocrystals. However, precise nanocrystal surface modification is extremely difficult to achieve. Most research focuses on finding ligands that fully passivate the nanocrystal surface, with an emphasis on the supramolecular structure generated by the ligand shell. Inspired by molecular metal-coordination complexes, we devised an approach based on ligand anchoring groups that are flanked by encumbering organic substituents and are chemoselective for binding to nanocrystal corner, edge, and facet sites. Through experiment and theory, we affirmed that the surface-ligand steric pressures generated by these organic substituents are significant enough to impede binding to regions of low nanocurvature, such as nanocrystal facets, and to promote binding to regions of high curvature such as nanocrystal edges.

6.
ACS Appl Mater Interfaces ; 14(28): 32598-32607, 2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35816614

ABSTRACT

Surface-enhanced Raman spectroscopy (SERS) is a widely used sensing technique for ultrasensitivity chemical sensing, biomedical detection, and environmental analysis. Because SERS signal is proportional to the fourth power of the local electric field, several SERS applications have focused on the design of plasmonic nanogaps to take advantage of the extremely strong near-field enhancement that results from plasmonic coupling, but few designs have focused on how SERS detection is affected by molecular orientation within these nanogaps. Here, we demonstrate a nanoparticle-on-metal metasurface designed for near-perfect optical absorption as a platform for Raman detection of highly oriented molecular analytes, including two-dimensional materials and aromatic molecules. This metasurface platform overcomes challenges in nanoparticle aggregation, which commonly leads to low or fluctuating Raman signals in other colloidal nanoparticle platforms. Our metasurface-enhanced Raman spectroscopy (mSERS) platform is based on a colloidal Langmuir-Schaefer deposition, with up to 32% surface coverage density of nanogaps across an entire sensor chip. In this work, we perform both simulations of the local electric field and experimental characterization of the mSERS signal obtained for oriented molecular layers. We then demonstrate this mSERS platform for the quantitative detection of the drinking-water toxin polybrominated diphenyl ether (BDE-15), with a limit of detection of 0.25 µM under 530 µW excitation. This detection limit is comparable to other SERS-based sensors operating at laser powers over 3 orders of magnitude higher, indicating the promise of our mSERS platform for nondestructive and low-level analyte detection.

7.
Nat Commun ; 12(1): 3111, 2021 May 25.
Article in English | MEDLINE | ID: mdl-34035272

ABSTRACT

On-chip plasmonic circuitry offers a promising route to meet the ever-increasing requirement for device density and data bandwidth in information processing. As the key building block, electrically-driven nanoscale plasmonic sources such as nanoLEDs, nanolasers, and nanojunctions have attracted intense interest in recent years. Among them, surface plasmon (SP) sources based on inelastic electron tunneling (IET) have been demonstrated as an appealing candidate owing to the ultrafast quantum-mechanical tunneling response and great tunability. However, the major barrier to the demonstrated IET-based SP sources is their low SP excitation efficiency due to the fact that elastic tunneling of electrons is much more efficient than inelastic tunneling. Here, we remove this barrier by introducing resonant inelastic electron tunneling (RIET)-follow a recent theoretical proposal-at the visible/near-infrared (NIR) frequencies and demonstrate highly-efficient electrically-driven SP sources. In our system, RIET is supported by a TiN/Al2O3 metallic quantum well (MQW) heterostructure, while monocrystalline silver nanorods (AgNRs) were used for the SP generation (localized surface plasmons (LSPs)). In principle, this RIET approach can push the external quantum efficiency (EQE) close to unity, opening up a new era of SP sources for not only high-performance plasmonic circuitry, but also advanced optical sensing applications.

10.
ACS Nano ; 14(6): 7666-7672, 2020 06 23.
Article in English | MEDLINE | ID: mdl-32438800

ABSTRACT

The strongly enhanced and confined subwavelength optical fields near plasmonic nanoantennas have been extensively studied not only for the fundamental understanding of light-matter interactions at the nanoscale but also for their emerging practical application in enhanced second harmonic generation, improved inelastic electron tunneling, harvesting solar energy, and photocatalysis. However, owing to the deep subwavelength nature of plasmonic field confinement, conventional optical imaging techniques are incapable of characterizing the optical performance of these plasmonic nanoantennas. Here, we demonstrate super-resolution imaging of ∼20 nm optical field confinement by monitoring randomly moving dye molecules near plasmonic nanoantennas. This Brownian optical microscopy is especially suitable for plasmonic field characterization because of its capabilities for polarization sensitive wide-field super-resolution imaging.

11.
Light Sci Appl ; 8: 13, 2019.
Article in English | MEDLINE | ID: mdl-30701072

ABSTRACT

New materials that exhibit strong second-order optical nonlinearities at a desired operational frequency are of paramount importance for nonlinear optics. Giant second-order susceptibility χ (2) has been obtained in semiconductor quantum wells (QWs). Unfortunately, the limited confining potential in semiconductor QWs causes formidable challenges in scaling such a scheme to the visible/near-infrared (NIR) frequencies for more vital nonlinear-optic applications. Here, we introduce a metal/dielectric heterostructured platform, i.e., TiN/Al2O3 epitaxial multilayers, to overcome that limitation. This platform has an extremely high χ (2) of approximately 1500 pm/V at NIR frequencies. By combining the aforementioned heterostructure with the large electric field enhancement afforded by a nanostructured metasurface, the power efficiency of second harmonic generation (SHG) achieved 10-4 at an incident pulse intensity of 10 GW/cm2, which is an improvement of several orders of magnitude compared to that of previous demonstrations from nonlinear surfaces at similar frequencies. The proposed quantum-engineered heterostructures enable efficient wave mixing at visible/NIR frequencies into ultracompact nonlinear optical devices.

12.
Langmuir ; 35(8): 2887-2897, 2019 Feb 26.
Article in English | MEDLINE | ID: mdl-29806940

ABSTRACT

In this feature article, we discuss our recent work in the synthesis of novel supramolecular precursors for semiconductor nanocrystals. Metal chalcogenolates that adopt liquid-crystalline phases are employed as single-source precursors that template the growth of shaped solid-state nanocrystals. Supramolecular assembly is programmed by both precursor chemical composition and molecular parameters such as the alkyl chain length, steric bulk, and the intercalation of halide ions. Here, we explore the various design principles that enable the rational synthesis of these single-source precursors, their liquid-crystalline phases, and the various semiconductor nanocrystal products that can be generated by thermolysis, ranging from highly anisotropic two-dimensional nanosheets and nanodisks to spheres.

13.
Chem Rev ; 118(6): 3100-3120, 2018 03 28.
Article in English | MEDLINE | ID: mdl-29419286

ABSTRACT

Plasmonic nanostructures are extensively used building blocks for engineering optical materials and device architectures. Plasmonic nanocomposites (pNCs) are an emerging class of materials that integrate these nanostructures into hierarchical and often multifunctional systems. These pNCs can be highly customizable by modifying both the plasmonic and matrix components, as well as by controlling the nano- to macroscale morphology of the composite as a whole. Assembly at the nanoscale plays a particularly important role in the design of pNCs that exhibit complex or responsive optical function. Due to their scalability and tunability, pNCs provide a versatile platform for engineering new plasmonic materials and for facile integration into optoelectronic device architectures. This review provides a comprehensive survey of recent achievements in pNC structure, design, fabrication, and optical function, along with some examples of their application in optoelectronics and sensing.

14.
Nat Commun ; 7: 13399, 2016 11 04.
Article in English | MEDLINE | ID: mdl-27811946

ABSTRACT

The vast majority of modern microelectronic devices rely on carriers within semiconductors due to their integrability. Therefore, the performance of these devices is limited due to natural semiconductor properties such as band gap and electron velocity. Replacing the semiconductor channel in conventional microelectronic devices with a gas or vacuum channel may scale their speed, wavelength and power beyond what is available today. However, liberating electrons into gas/vacuum in a practical microelectronic device is quite challenging. It often requires heating, applying high voltages, or using lasers with short wavelengths or high powers. Here, we show that the interaction between an engineered resonant surface and a low-power infrared laser can cause enough photoemission via electron tunnelling to implement feasible microelectronic devices such as transistors, switches and modulators. The proposed photoemission-based devices benefit from the advantages of gas-plasma/vacuum electronic devices while preserving the integrability of semiconductor-based devices.

15.
J Am Chem Soc ; 138(41): 13717-13725, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27657854

ABSTRACT

Copper sulfide nanocrystals support localized surface plasmon resonances in the near-infrared wavelengths and have significant potential as active plasmonic nanomaterials due to the tunability of this optical response. While numerous strategies exist for synthesizing copper sulfide nanocrystals, few methods result in nanocrystals with both controlled morphological shapes and crystallinity. Here, we synthesize and characterize ultrathin (<5 nm) Cu9S5 nanosheets that are formed by solventless thermolysis, utilizing Cu alkanethiolates as single-source precursors. Layered Cu alkanethiolate precursors adopt a highly ordered structure which can be further stabilized in the presence of Cl- and also serve to template the formation of nanosheets. We show that, in the absence of Cl-, only isotropic and disk-like Cu2-xS nanocrystals form. These findings offer further insight into the use of layered metal-organic single-source precursors as templates for anisotropic nanocrystal growth.

16.
ACS Nano ; 10(8): 7523-31, 2016 08 23.
Article in English | MEDLINE | ID: mdl-27454680

ABSTRACT

Tip-enhanced Raman spectroscopy enables access to chemical information with nanoscale spatial resolution and single-molecule sensitivities by utilizing optical probes that are capable of confining light to subwavelength dimensions. Because the probes themselves possess nanoscale features, they are notoriously difficult to fabricate, and more critically, can result in poor reproducibility. Here, we demonstrate high-performance, predictable, and readily tunable nanospectroscopy probes that are fabricated by self-assembly. Shaped metal nanoparticles are organized into dense layers and deposited onto scanning probe tips. When coupled to a metal surface, these probes behave like nanoantenna by supporting a strong optical resonance, producing dramatic Raman field enhancements in the range of 10(8)-10(9) with sub-50 nm spatial resolution. In contrast to other nanospectroscopy probes, our colloidal probes can be fabricated in a scalable fashion with a batch-to-batch reproducibility of ∼80% and serve as an important demonstration of bottom-up engineering.

17.
Analyst ; 141(12): 3916-24, 2016 Jun 21.
Article in English | MEDLINE | ID: mdl-27169362

ABSTRACT

High Raman enhancement factors (EFs) have been observed for surface-enhanced Raman spectroscopy (SERS) substrates fabricated from colloidal metal nanoparticles. Electrodynamic models of single nanoparticles often do not accurately predict the Raman EFs measured experimentally for such colloidal substrates, which often consist of nanoparticles that exhibit heterogeneity in both size and shape. Here, we investigate the size and shape dispersity of colloidal Ag nanocube samples and their effect on Raman EF. We generate an analytical model that incorporates nanocube size dispersion and calculates the Raman EF associated with an ensemble of differently sized nanocubes. For nanocubes that are ∼70-80 nm in size, this model is sufficient to correct the inaccuracies for electrodynamic simulations of a single nanocube model. For nanocubes >90 nm, size dispersity alone fails to account for the high EFs observed when these substrates are excited off-resonance. We hypothesize that shape defects may play a significant role in optical response at these larger sizes and discuss how these factors can play a role in our analytical model.

18.
Phys Rev E ; 93(2): 022501, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26986370

ABSTRACT

Understanding how nanoparticles (NPs) diffuse, stick, and assemble into larger structures within polymers is key to the design and fabrication of NP-polymer composites. Here we describe an approach for inferring the dynamic parameters of NP assembly from spatially and temporally disjointed images of composites. The approach involves iterative adjustment of the parameters of a kinetic model of assembly until the computed size statistics of NP clusters match those obtained from high-throughput analysis of the experimental images. Application of this approach to the assembly of shaped, metal NPs in polymer films suggests that NP structures grow via a cluster-cluster aggregation mechanism, where NPs and their clusters diffuse with approximately Stokes-Einstein diffusivity and stick to other NPs or clusters with a probability that depends strongly on the size and shape of the NPs and the molecular weight of the polymer.

19.
Science ; 351(6273): 561-2, 2016 Feb 05.
Article in English | MEDLINE | ID: mdl-26912688
20.
Faraday Discuss ; 186: 489-502, 2016.
Article in English | MEDLINE | ID: mdl-26818438

ABSTRACT

We achieve the fabrication of plasmonic meta-atoms by utilizing a novel, modular approach to nanoparticle self-assembly that utilizes polymer templating to control meta-atom size and geometry. Ag nanocubes are deposited and embedded into a polymer thin-film, where the polymer embedding depth is used to dictate which nanocube faces are available for further nanocrystal binding. Horizontal and vertical nanocube dimers were successfully fabricated with remarkably high yield using a bifunctional molecular linker to bind a second nanocube. Surface plasmon coupling can be readily tuned by varying the size, shape, and orientation of the second nanoparticle. We show that meta-atoms can be fabricated to exhibit angle- and polarization-dependent optical properties. This scalable technique for meta-atom assembly can be used to fabricate large-area metasurfaces for polarization- and phase-sensitive applications, such as optical sensing.

SELECTION OF CITATIONS
SEARCH DETAIL
...