Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Dev Cell ; 58(6): 522-534.e7, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36924770

ABSTRACT

Mechanosensitive processes often rely on adhesion structures to strengthen, or mature, in response to applied loads. However, a limited understanding of how the molecular tensions that are experienced by a particular protein affect the recruitment of other proteins represents a major obstacle in the way of deciphering molecular mechanisms that underlie mechanosensitive processes. Here, we describe an imaging-based technique, termed fluorescence-tension co-localization (FTC), for studying molecular-tension-sensitive protein recruitment inside cells. Guided by discrete time Markov chain simulations of protein recruitment, we integrate immunofluorescence labeling, molecular tension sensors, and machine learning to determine the sensitivity, specificity, and context dependence of molecular-tension-sensitive protein recruitment. The application of FTC to the mechanical linker protein vinculin in mouse embryonic fibroblasts reveals constitutive and context-specific molecular-tension-sensitive protein recruitment that varies with adhesion maturation. FTC overcomes limitations associated with the alteration of numerous proteins during the manipulation of cell contractility, providing molecularly specific insights into tension-sensitive protein recruitment.


Subject(s)
Fibroblasts , Focal Adhesions , Animals , Mice , Focal Adhesions/metabolism , Fibroblasts/metabolism , Vinculin/metabolism , Cell Adhesion/physiology
2.
Angiogenesis ; 20(4): 493-504, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28608153

ABSTRACT

Convective transport can significantly distort spatial concentration gradients. Interstitial flow is ubiquitous throughout living tissue, but our understanding of how interstitial flow affects concentration gradients in biological processes is limited. Interstitial flow is of particular interest for angiogenesis because pathological and physiological angiogenesis is associated with altered interstitial flow, and both interstitial flow and morphogen gradients (e.g., vascular endothelial growth factor, VEGF) can potentially stimulate and guide new blood vessel growth. We designed an in vitro microfluidic platform to simulate 3D angiogenesis in a tissue microenvironment that precisely controls interstitial flow and spatial morphogen gradients. The microvascular tissue was developed from endothelial colony forming cell-derived endothelial cells extracted from cord blood and stromal fibroblasts in a fibrin extracellular matrix. Pressure in the microfluidic lines was manipulated to control the interstitial flow. A mathematical model of mass and momentum transport, and experimental studies with fluorescently labeled dextran were performed to validate the platform. Our data demonstrate that at physiological interstitial flow (0.1-10 µm/s), morphogen gradients were eliminated within hours, and angiogenesis demonstrated a striking bias in the opposite direction of interstitial flow. The interstitial flow-directed angiogenesis was dependent on the presence of VEGF, and the effect was mediated by αvß3 integrin. We conclude that under physiological conditions, growth factors such as VEGF and fluid forces work together to initiate and spatially guide angiogenesis.


Subject(s)
Extracellular Fluid/physiology , Neovascularization, Physiologic , Diffusion , Humans , Integrin alphaVbeta3/metabolism , Microfluidics , Neovascularization, Physiologic/drug effects , Vascular Endothelial Growth Factor A/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...