Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38683967

ABSTRACT

Hindered by the high diffusion energy barrier of Li+ in graphite anode layers, the low-temperature application of traditional Li-ion batteries is limited. Lithium metal without intercalation and with excellent specific capacity is expected to support battery operation at low temperatures. However, due to the low conductivity, high freezing point, and strong solvation energy of traditional carbonate electrolytes, the application of lithium-metal batteries at low temperatures remains challenged. In this paper, an all-ester-based ternary solvent electrolyte based on fluorinated carbonate and methyl acetate is developed to improve the cyclic efficiency of the Li-metal anode at subzero temperatures. Methyl acetate, with low viscosity and low freezing point, endows Li+ with efficient transfer in the bulk phase at low temperatures. Fluorinated cosolvent regulates the solvation structure, thereby facilitating Li+ desolvation while forming a LiF-rich solid electrolyte interphase. The electrolyte exhibits good compatibility with the Li-metal anode, as confirmed by the significantly reduced kinetic barrier of Li+ diffusion at the interface. The theoretical calculations suggest that anions occupy the dominant positions within the inner solvation sheath. The in situ/ex situ characterizations provide straightforward evidence of a dendrite-free Li-metal electrode during cycling. As a result, the symmetric Li||Li cell is able to cycle stably for thousands of hours at current densities of 0.5 mA cm-2 and 1 mAh cm-2. When paired with a LiFePO4 cathode, the battery at 0.2 C (1 C = 170 mA g-1) has a capacity retention of 95.4% after 200 cycles at -15 °C and 92.6% after 100 cycles at -20 °C, respectively.

2.
Angew Chem Int Ed Engl ; 63(21): e202401055, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38391043

ABSTRACT

Lithium-sulfur (Li-S) battery with a sulfurized polyacrylonitrile cathode is a promising alternative to Li-ion systems. However, the sluggish charge transfer of cathode and accumulation of inactive Li on anode remain persistent challenges. An advanced electrolyte additive with function towards both cathode and anode holds great promise to address these issues. Herein, we present a new strategy to boost sulfur activity and rejuvenate dead Li simultaneously. In the polar electrolyte containing I2-LiNO3 additives, I3 -/IO3 - are triggered significantly by the reaction between NO3 - and I- ions. The I3 -/IO3 - are reactive to insulated Li2S product of cathode and inactive Li on anode, thus accelerating the conversion reaction of sulfur and recovering Li sources back to battery cycling. The in situ/ex situ spectroscopic and morphologic monitoring reveal the crucial role of iodine in promoting Li2S dissociation and inhibiting dendritic Li growth. With the modified electrolyte, the symmetric Li||Li cells deliver a lifespan of 4000 h with an overpotential less than 12 mV at 0.5 mA cm-2. For Li-S cells, 100 % capacity retention up to thousands of cycles and enhanced rate capability are available. This work demonstrates a feasible strategy on electrolyte engineering for practical applications of Li-S batteries.

3.
J Chem Phys ; 160(1)2024 Jan 07.
Article in English | MEDLINE | ID: mdl-38180256

ABSTRACT

To cope with the shuttling of soluble lithium polysulfides in lithium-sulfur batteries, confinement tactics, such as trapping of sulfur within porous carbon structures, have been extensively studied. Although performance has improved a bit, the slow polysulfide conversion inducing fast capacity decay remains a big challenge. Herein, a NiS2/carbon (NiS2/C) composite with NiS2 nanoparticles embedded in a thin layer of carbon over the surface of micro-sized hollow structures has been prepared from Ni-metal-organic frameworks. These unique structures can physically entrap sulfur species and also influence their redox conversion kinetics. By improving the reaction kinetics of polysulfides, the NiS2/carbon@sulfur (NiS2/C@S) composite cathode with a suppressed shuttle effect shows a high columbic efficiency and decent rate performance. An initial capacity of 900 mAh g-1 at the rate of 1 C (1 C = 1675 mA g-1) and a low-capacity decline rate of 0.132% per cycle after 500 cycles are obtained, suggesting that this work provides a rational design of a sulfur cathode.

4.
Article in English | MEDLINE | ID: mdl-37878785

ABSTRACT

The insufficient cyclic efficiency and poor safety have prohibited the commercial applications of the lithium-metal anode because of its uncontrolled dendrite growth at the surface. A mechanically stable and highly ionic conductive solid electrolyte interphase (SEI) holds great promise to address the issues. Herein, a viable surface engineering approach is proposed for stabilizing the Li anode via a scalable artificial method. The surface of Li metal is functionalized by constructing a mechanically tough and electron-insulating metal-organic framework (MOF) of the MIL-125(Ti) layer. In-situ optical microscopy reveals its crucial role in inhibiting dendritic Li growth. Because of the intrinsic insulativity and highly ordered micropores of MIL-125(Ti), the Li+ ions acquire electrons under the coating layer, resulting in a uniform and dense Li deposition behavior. The symmetric cell of the MOF-modified Li electrode delivers a long life span of 2000 h with an overpotential of less than 20 mV at 0.5 mA cm-2. When paired with the same MOF-derived sulfur cathode, decent cycling retention is available as well. This work demonstrates a feasible strategy for the development of a stable Li-metal anode with alleviative dendritic growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...