Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 36
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38921916

ABSTRACT

A series of TiN/ITO composite films with various thickness of ITO buffer layer were fabricated in this study. The enhancement of optical properties was realized in the composite thin films. The absorption spectra showed that absorption intensity in the near-infrared region was obviously enhanced with the increase of ITO thickness due to the coupling of surface plasma between TiN and ITO. The epsilon-near-zero wavelength of this composite can be tuned from 935 nm to 1895 nm by varying the thickness of ITO thin films. The nonlinear optical property investigated by Z-scan technique showed that the nonlinear absorption coefficient (ß = 3.03 × 10-4 cm/W) for the composite was about 14.02 times greater than that of single-layer TiN films. The theoretical calculations performed by finite difference time domain were in good agreement with those of the experiments.

2.
Materials (Basel) ; 17(7)2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38612204

ABSTRACT

In this paper, La2Ce2O7 powders co-activated by Ho3+ and Yb3+ were synthesized by a high temperature solid-state reaction. Both Ho3+ and Yb3+ substitute the La3+ sites in the La2Ce2O7 lattice, where the Ho3+ concentration is 0.5 at.% and the Yb3+ concentration varies in the range of 10~18% at.%. Pumped by a 980 nm laser, the up-conversion (UC) green emission peak at 547 nm and the red emission at 661 nm were detected. When the doping concentration of Ho3+ and Yb3+ are 0.5 at.% and 14% at.%, respectively, the UC emission reaches the strongest intensity. The temperature-sensing performance of La2Ce2O7:Ho3+ with Yb3+ was studied in the temperature range of 303-483 K, where the highest relative sensitivity (Sr) is 0.0129 K-1 at 483 K. The results show that the powder La2Ce2O7:Ho3+, Yb3+ can be a potential candidate for remote temperature sensors.

3.
Materials (Basel) ; 17(8)2024 Apr 21.
Article in English | MEDLINE | ID: mdl-38673274

ABSTRACT

Fluorescent carbon dots (CDs) are a new type of photoluminescent nanomaterial. Solid-state CDs usually undergo fluorescence quenching due to direct π-π* interactions and superabundant energy resonance transfer. Therefore, the preparation of solid-state fluorescent CDs is a challenge, especially the preparation of long wavelength solid-state CDs. In this research, long wavelength emission CDs were successfully synthesized by solvothermal methods, and the prepared CDs showed good hydrophobicity. The composite solid-state CDs/PVP (Polyvinyl pyrrolidone) can emit strong red fluorescence, and the quantum yield (QY) of the CDs/PVP powder reaches 18.9%. The prepared CDs/PVP solid-state powder was successfully applied to latent fingerprint detection. The results indicate that the latent fingerprints developed by CDs/PVP powder have a fine definition and high contrast visualization effect, which proves that the prepared CDs/PVP has great application potential in latent fingerprint detection. This study may provide inspiration and ideas for the design of new hydrophobic CDs.

4.
Lab Chip ; 24(8): 2280-2286, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38506153

ABSTRACT

Concentration gradient generation and mixed combinations of multiple solutions are of great value in the field of biomedical research. However, existing concentration gradient generators for single or two-drug solutions cannot simultaneously achieve multiple concentration gradient formations and mixed solution combinations. Furthermore, the whole system was huge, and required expensive auxiliary equipment, which may lead to complex operations. To address this problem, we devised a novel 3D microchannel network design, which is capable of creating all the desired mixture combinations and concentration gradients of given small amounts of the input solutions. As a proof of concept, the device we presented was verified by both colorimetric and fluorescence detection methods to test the efficiency. This can enable the implementation of one to three solutions with no driving pump and facilitate unique multiple types of more concentration gradients and mixture combinations in a single operation. We envision that this will be a promising candidate for the development of simplified methods for screening of the appropriate concentration and combination, such as various drug screening applications.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Drug Evaluation, Preclinical
5.
J Vis Exp ; (201)2023 Nov 21.
Article in English | MEDLINE | ID: mdl-38078594

ABSTRACT

Polymerase chain reaction (PCR) is a traditional method employed for the amplification of a target gene that has played an important role in biomolecular diagnostics. However, traditional PCR is very time-consuming because of the low-temperature variation efficiency. This work proposes a continuous-flow-PCR (CF-PCR) system based on a microfluidic chip. The amplification time can be greatly reduced by running the PCR solution into a microchannel placed on heaters set at different temperatures. Moreover, as capillary electrophoresis (CE) is an ideal way to differentiate positive and false-positive PCR products, a CE system was built to achieve efficient separation of the DNA fragments. This paper describes the process of amplification of Escherichia coli (E. coli) by the CF-PCR system built in-house and the detection of the PCR products by CE. The results demonstrate that the target gene of E. coli was successfully amplified within 10 min, indicating that these two systems can be used for the rapid amplification and detection of nucleic acids.


Subject(s)
Escherichia coli , Microfluidics , Escherichia coli/genetics , DNA/genetics , Polymerase Chain Reaction/methods , Electrophoresis, Capillary/methods
6.
Nanomaterials (Basel) ; 13(10)2023 May 13.
Article in English | MEDLINE | ID: mdl-37242047

ABSTRACT

The nonlinear optical (NLO) response of indium tin oxide films covered with Au@Ag colloid layer was characterized by a femtosecond single-beam open aperture (OA) Z-scan technique in this study. As the Au@Ag thickness increased, the transition from saturated absorption (SA) to reverse saturated absorption (RSA) was found in these ITO matrix composites. The nonlinear absorption coefficient for these composite materials can be regulated from -6.85 × 10-7 m/W to 26.06 × 10-7 m/W. In addition, this work also characterized the structure, morphology, and other optical properties of the specimen, and the finite-difference time-domain (FDTD) results were consistent with the experimental results. The NLO response of the ITO/Au@Ag composites can be attributed to the phase properties, synergistic competition effect, strong interaction based on the epsilon-near-zero (ENZ) mode, and localized surface plasmon resonance (LSPR) between the indium tin oxide films and Au@Ag.

7.
Lab Chip ; 22(4): 733-737, 2022 02 15.
Article in English | MEDLINE | ID: mdl-35037006

ABSTRACT

The concept of time to place conversion makes using a continuous flow polymerase chain reaction (CF-PCR) microfluidic chip an ideal way to reduce the time required for amplification of target genes; however, it also brings about low throughput amplicons. Although multiplex PCR can simultaneously amplify more than one target gene in the chip, it may easily induce false positives because of cross-reactions. To circumvent this problem, we herein fabricated a microfluidic system based on a CF-PCR array microfluidic chip. By dividing the chip into three parts, we successfully amplified target genes of Porphyromonas gingivalis (P.g), Tannerella forsythia (T.f) and Treponema denticola (T.d). The results demonstrated that the minimum amplification time required for P.g, T.d and T.f was 2'07'', 2'51'' and 5'32'', respectively. The target genes of P.g, T.d and T.f can be simultaneously amplified in less than 8'05''. Such a work may provide a clue to the development of a high throughput CF-PCR microfluidic system, which is crucial for point of care testing for simultaneous detection of various pathogens.


Subject(s)
Microfluidics , Treponema denticola , Polymerase Chain Reaction , Porphyromonas gingivalis/genetics , Tannerella forsythia/genetics , Treponema denticola/genetics
8.
Spectrochim Acta A Mol Biomol Spectrosc ; 268: 120686, 2022 Mar 05.
Article in English | MEDLINE | ID: mdl-34890874

ABSTRACT

A series of WO3-x thin films with defects were obtained by thermal treatments from laser irradiation and annealing, respectively. The corresponding tunability of localized surface plasmon resonance properties and the enhancement of Raman scattering intensity were realized due to the defects in the WO3-x thin films after thermal treatments. With the changes of either laser power or annealing temperature, the crystalline quality of WO3-x thin film was declined with a red shift of the surface plasmon resonance wavelength from 464 nm to 482 nm. The as-treated WO3-x film shows good uniformity and reproducibility in Surface-enhanced Raman spectroscopy measurement, the detection limit for dye methylene blue can reach 10-8 mol/L, and enhancement factor is 1.38 × 106. Furthermore, the simulation result of finite-difference time-domain showed a substantial agreement with experimental results.

9.
Dalton Trans ; 51(5): 1784-1790, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34935806

ABSTRACT

In this paper, BaAl2O4:Eu2+-Al2O3 ceramics were successfully prepared by spark plasma sintering (SPS). The optical properties of the multiphase ceramics doped with different concentrations of alumina were studied. Under excitation with 365 nm ultraviolet light, the luminescent color of the samples can be adjusted by changing the sintering temperature and the contents of alumina addition. The temperature dependent fluorescence spectra in the temperature range of 4 K-434 K were measured, and the temperature dependent fluorescence intensity ratio (FIR) was calculated. The FIR monotonically increased with the increase of temperature, indicating that the material could be used for temperature sensing. The absolute sensitivity Sa of the temperature sensing fluorescent material is larger than 0.005 K-1 at 334 K-434 K, and the relative sensitivity Sr is larger than 0.75% K-1 at 304 K-434 K. The results show that the BaAl2O4:Eu2+-Al2O3 ceramic is a promising non-contact temperature sensing material.

10.
Lab Chip ; 21(22): 4390-4400, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34704106

ABSTRACT

In the chemical and biological fields, the creation of concentration gradient microenvironments is an important approach for many applications, such as crystal growth and drug screening. Although many concentration gradient generators have been demonstrated, current generators can hardly produce ultra-long linear concentration gradients. In this paper, we propose a concentration-gradient flow/droplet generator which consists of a microfluidic flow switch, a cavity array for stage-by-stage concentration dilution, and an optional T-junction for droplet formation. The generator can realize an ultra-long continuously-varying concentration gradient along the flow direction. Generation of a 38 mm concentration gradient was demonstrated. The length can be further extended by enlarging the capacity of the cavities and increasing the number of the stages. The concentration gradient showed high linearity in the range of 10% to 90%. Moreover, cyclic generation of a concentration gradient flow and droplets with different concentrations was realized by the generator. In a demonstration of drug screening, the generator was employed to produce paclitaxel in different concentrations. A negative correlation between the 4T1 cell viability and the paclitaxel concentration was observed after the treatment. We envision that the concentration gradient generator will be a promising candidate for various drug screening applications.


Subject(s)
Microfluidics
11.
Anal Chim Acta ; 1178: 338811, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34482872

ABSTRACT

Capillary gel electrophoresis is widely applied for determination of sequence and size of DNA, in which the sieving gel plays an unignorable role. Herein, a pore-size controllable hydrogel was synthesized in the capillary with two symmetrical tetrahedron-like macromonomers consisting of pentaerythritoltetra (succinimidylcarboxypentyl) polyoxyethylene (PS) and pentaerythritoltetra (aminopropyl) polyoxyethylene) (PA). By capillary electrophoresis of the DNA fragments with this hydrogel, it is found that a homogenous structure of hydrogel which is more suitable for the DNA separation can be achieved when the molecular weight of PA is approximate to that of PS. DNA fragments smaller than 1500 bp can be well resolved in this hydrogel within 13 min. More than 100 consecutive runs can be carried out in such a dynamically coated capillary before performance begins to degrade. Notably, such hydrogel can realize separation of dsDNA up to single base pair resolution and same length of dsDNA with 1 bp difference.


Subject(s)
Hydrogels , Polyethylene Glycols , DNA , Electrophoresis, Capillary , Molecular Weight
12.
Lab Chip ; 21(16): 3159-3164, 2021 08 21.
Article in English | MEDLINE | ID: mdl-34190300

ABSTRACT

Porphyromonas gingivalis (P.g), Treponema denticola (T.d), and Tannerella forsythia (T.f) are believed to be the major periodontal pathogens that cause gingivitis, which affects 50-90% of adults worldwide. Microfluidic chips based on continuous flow PCR (CF-PCR) are an ideal alternative to a traditional thermal cycler, because it can effectively reduce the time needed for temperature transformation. Herein, we explored multi-PCR of P.g, T.d and T.f using a CF-PCR microfluidic chip for the first time. Through a series of experiments, we obtained two optimal combinations of primers that are suitable for performing multi-PCR on these three periodontal pathogens, with amplicon sizes of (197 bp, 316 bp, 226 bp) and (197 bp, 316 bp, 641 bp), respectively. The results also demonstrated that by using multi-PCR, the amplification time can be reduced to as short as 3'48'' for the short-sized amplicons, while for T.f (641 bp), the minimum time required was 8'25''. This work provides an effective way to simultaneously amplify the target genes of P.g, T.d and T.f within a short time, and may promote CF-PCR as a practical tool for point-of-care testing of gingivitis.


Subject(s)
Microfluidics , Treponema denticola , Adult , Humans , Polymerase Chain Reaction , Porphyromonas gingivalis/genetics , Tannerella forsythia , Treponema denticola/genetics
13.
Opt Express ; 29(8): 12763-12771, 2021 Apr 12.
Article in English | MEDLINE | ID: mdl-33985026

ABSTRACT

A variety of techniques have been proposed for fabricating high-density, high-numerical-aperture microlens arrays. However, a microlens array with a uniform focal length has a narrow depth of field, limiting the ability of depth perception. In this paper, we report on a fabrication method of multi-focus microlens arrays. The method for the preparation of the mold of the microlens array is based on 3D printing and microfluidic manipulation techniques. In the preparation of the mold, curved surfaces of the photo-curable resin with different curvatures are formed in the 3D printed microholes whose walls are inclined with different angles. The replicated microlens array consists of hundreds of lenslets with a uniform diameter of 500 µm and different focal lengths ranging from 635 µm to 970 µm. The multi-focus microlens array is capable of extending the depth of field for capturing clear images of objects at different distances ranging from 14.3 mm to 45.5 mm. The multi-focus microlens array has the potential to be used in a diversity of large-depth-of-field imaging and large-range depth perception applications.

14.
Front Chem ; 9: 641670, 2021.
Article in English | MEDLINE | ID: mdl-33912538

ABSTRACT

Tumor cells circulating in the peripheral blood are the prime cause of cancer metastasis and death, thus the identification and discrimination of these rare cells are crucial in the diagnostic of cancer. As a label-free detection method without invasion, Raman spectroscopy has already been indicated as a promising method for cell identification. This study uses a confocal Raman spectrometer with 532 nm laser excitation to obtain the Raman spectrum of living cells from the kidney, liver, lung, skin, and breast. Multivariate statistical methods are applied to classify the Raman spectra of these cells. The results validate that these cells can be distinguished from each other. Among the models built to predict unknown cell types, the quadratic discriminant analysis model had the highest accuracy. The demonstrated analysis model, based on the Raman spectrum of cells, is propitious and has great potential in the field of biomedical for classifying circulating tumor cells in the future.

15.
Anal Bioanal Chem ; 412(8): 1871-1877, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31989197

ABSTRACT

Fluorescent microspheres (FMs) are widely employed in diagnostics and life sciences research; here, we investigated the effect of capillary coating, polymer concentration, electric field strength, and sample concentration on the separation performance of 1.0 µm FMs in hydroxyethyl cellulose (HEC) by capillary electrophoresis (CE). Results showed that (1) capillary coating could enhance the fluorescence signal. (2) For HEC with the same molecular weight, the higher HEC concentration is, the later the first peak appears in the electropherogram. (3) When FMs are diluted, increasing the electric field strength can enhance the migration speed and reduce the aggregation of FMs. (4) The number of FMs calculated is close to the theoretical value when it is diluted 10,000 times. The optimum conditions for CE were as follows: 6 cm/8 cm of effective length and total length of the coated capillary, 0.3% HEC (1300 k), and 300 V/cm of electric field strength. Such a study is helpful for the development of a FM counting system. Graphical abstract.

16.
Nanotechnology ; 31(14): 145715, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-31860904

ABSTRACT

Photocatalytic water splitting with solar energy is the most promising and environmentally friendly hydrogen production method. Having an efficient and cost-effective photocatalyst is key to hydrogen production. Cu dopant has been shown to greatly enhance photocatalytic activities. In this work, Cu2+ ions were doped into Beta zeolite powders (Cu-Beta) by the ion exchange method. The hydrogen evolution efficiency of Cu-Beta was much higher than the raw Beta zeolites without Cu loading. After solid phase reaction, the band gap of Cu-Beta reduced from 3.48 eV to less than 2 eV, and as a result enhanced the optical absorption intensity, particularly in the visible region. The best hydrogen evolution efficiency was 102.12 µmol · g-1 · h-1 when the treated temperature was 900 °C (Cu-Beta-900). The temperature of the solid phase reaction had an important influence on the photocatalytic performance of Cu-Beta; a suitable reaction temperature can greatly improve its photocatalytic performance.

17.
Anal Biochem ; 556: 99-103, 2018 09 01.
Article in English | MEDLINE | ID: mdl-29969583

ABSTRACT

Effective separation of short DNA fragments is important for the identification of PCR or LAMP products. We investigated the effect of electric field strength, sample plug width, effective length of the capillary, concentration and molecular weight of polymer on the separation performance of small DNA. Results demonstrated that the sample plug played a non-negligible role in the peak broadening. The migration time of DNA was exponentially decreased with the increase of electric field strength. Increasing effective length of capillary, concentration or molecular weight of HEC may improve the separation performance, but it was at the cost of long migration time.


Subject(s)
DNA/analysis , DNA/chemistry , Electrophoresis, Capillary/methods , Molecular Weight
18.
Nanotechnology ; 29(1): 015705, 2018 01 05.
Article in English | MEDLINE | ID: mdl-29139394

ABSTRACT

Tuning the localized surface plasmon resonance (LSPR) in doped semiconductor nanoparticles (NPs), which represents an important characteristic in LSPR sensor applications, still remains a challenge. Here, indium tin oxide/indium tin alloy (ITO/In-Sn) bilayer films were deposited by electron beam evaporation and the properties, such as the LSPR and surface morphology, were investigated by UV-VIS-NIR double beam spectrophotometer and atomic force microscopy (AFM), respectively. By simply engineering the thickness of ITO/In-Sn NPs without any microstructure fabrications, the LSPR wavelength of ITO NPs can be tuned by a large amount from 858 to 1758 nm. AFM images show that the strong LSPR of ITO NPs is closely related to the enhanced coupling between ITO and In-Sn NPs. Blue shifts of ITO LSPR from 1256 to 1104 nm are also observed in the as-annealed samples due to the higher free carrier concentration. Meanwhile, we also demonstrated that the ITO LSPR in ITO/In-Sn NPs structures has good sensitivity to the surrounding media and stability after 30 d exposure in air, enabling its application prospects in many biosensing devices.

19.
J Vis Exp ; (124)2017 06 01.
Article in English | MEDLINE | ID: mdl-28605369

ABSTRACT

Slab gel electrophoresis (SGE) is the most common method for the separation of DNA fragments; thus, it is broadly applied to the field of biology and others. However, the traditional SGE protocol is quite tedious, and the experiment takes a long time. Moreover, the chemical consumption in SGE experiments is very high. This work proposes a simple method for the separation of DNA fragments based on an SGE chip. The chip is made by an engraving machine. Two plastic sheets are used for the excitation and emission wavelengths of the optical signal. The fluorescence signal of the DNA bands is collected by smartphone. To validate this method, 50, 100, and 1,000 bp DNA ladders were separated. The results demonstrate that a DNA ladder smaller than 5,000 bp can be resolved within 12 min and with high resolution when using this method, indicating that it is an ideal substitute for the traditional SGE method.


Subject(s)
DNA/isolation & purification , Electrophoresis, Agar Gel/methods , Smartphone , Time Factors
20.
Opt Express ; 25(9): 9901-9910, 2017 May 01.
Article in English | MEDLINE | ID: mdl-28468368

ABSTRACT

Nanoporous gold (NPG) has been reported to provide remarkable fluorescence enhancement of adjacent fluorophores due to the metal-enhanced fluorescence phenomenon (MEF), and the enhancement is related with the characteristic length of nanoporosity. To fully understand the effect of NPG on nearby fluorophores, it is desirable to study systems with well-defined metal-fluorophore distances. In this study we investigated the distance effect by using silica as the spacing layer between fluorophores and NPG. Originating from competition between plasmonic amplifying and metallic quenching, the dye molecule rhodamine 6G was best enhanced by 20-nm SiO2 coated nanoporous gold with the pore size of 36 nm, while the protein phycoerythrin was best enhanced by 15-nm SiO2 coated nanoporous gold with the pore size of 42 nm and the quantum dots were best enhanced by 20-nm SiO2 coated nanoporous gold with the pore size of 42 nm.

SELECTION OF CITATIONS
SEARCH DETAIL
...