Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Environ Sci Ecotechnol ; 9: 100146, 2022 Jan.
Article in English | MEDLINE | ID: mdl-36157854

ABSTRACT

Bacteria are key denitrifiers in the reduction of nitrate (NO3 --N), which is a contaminant in wastewater treatment plants (WWTPs). They can also produce carbon dioxide (CO2) and nitrous oxide (N2O). In this study, the autotrophic hydrogen-oxidizing bacterium Rhodoblastus sp. TH20 was isolated for sustainable treatment of NO3 --N in wastewater. Efficient removal of NO3 --N and recovery of biomass nitrogen were achieved. Up to 99% of NO3 --N was removed without accumulation of nitrite and N2O, consuming CO2 of 3.25 mol for each mole of NO3 --N removed. The overall removal rate of NO3 --N reached 1.1 mg L-1 h-1 with a biomass content of approximately 0.71 g L-1 within 72 h. TH20 participated in NO3 --N assimilation and aerobic denitrification. Results from 15N-labeled-nitrate test indicated that removed NO3 --N was assimilated into organic nitrogen, showing an assimilation efficiency of 58%. Seventeen amino acids were detected, accounting for 43% of the biomass. Nitrogen loss through aerobic denitrification was only approximately 42% of total nitrogen. This study suggests that TH20 can be applied in WWTP facilities for water purification and production of valuable biomass to mitigate CO2 and N2O emissions.

2.
Environ Sci Ecotechnol ; 5: 100081, 2021 Jan.
Article in English | MEDLINE | ID: mdl-36158612

ABSTRACT

There has long been a great concern with growing anthropogenic contaminants and their ecological and toxicological effects on living organisms and the surrounding environment for decades. Metabolomics, a functional readout of cellular activity, can capture organismal responses to various contaminant-related stressors, acquiring direct signatures to illustrate the environmental behaviours of anthropogenic contaminants better. This review entails the application of metabolomics to profile metabolic responses of environmental organisms, e.g. animals (rodents, fish, crustacean and earthworms) and microorganisms (bacteria, yeast and microalgae) to different anthropogenic contaminants, including heavy metals, nanomaterials, pesticides, pharmaceutical and personal products, persistent organic pollutants, and assesses their ecotoxicological impacts with regard to literature published in the recent five years. Contaminant-induced metabolism alteration and up/down-regulation of metabolic pathways are revealed in typical organisms. The obtained insights of variations in global metabolism provide a distinct understanding of how anthropogenic contaminants exert influences on specific metabolic pathways on living organisms. Thus with a novel ecotechnique of environmental metabolomics, risk assessments of anthropogenic contaminants are profoundly demonstrated.

3.
Environ Res ; 191: 110059, 2020 12.
Article in English | MEDLINE | ID: mdl-32805244

ABSTRACT

Ideonella sp. TH17, an autotrophic hydrogen-oxidizing bacterium (HOB), was successfully enriched and isolated from activated sludge in a domestic wastewater treatment plant (WWTP). Batch experiments were conducted to identify the cell growth and ammonium (NH4+-N) removal, and to verify the pathways of nitrogen utilization under different conditions. At a representative NH4+-N concentration of 100 mg/L in domestic wastewater, it was the first time that a HOB strain achieved a nearly 100% ammonium removal. More than 90% of NH4+-N was assimilated to biomass nitrogen by strain TH17. Only a little of N2 (<10% of initial NH4+-N) was detected without N2O emission in aerobic denitrification process. Autotrophic NH4+-N assimilation contributed predominantly to biomass nitrogen production, supplemented by assimilatory nitrate (NO3--N) reduction under aerobic conditions. A total of 17 amino acids, accounting for 54.25 ± 1.98% of the dry biomass, were detected in the bacterial biomass harvested at 72 h. These results demonstrated that the newly isolated strain TH17 was capable of removing NH4+-N and recovering nutrients from wastewater efficiently. A new solution was thus provided by this HOB strain for ammonium treatment in sustainable WWTPs of future.


Subject(s)
Ammonium Compounds , Bioreactors , Denitrification , Hydrogen , Nitrogen , Oxidation-Reduction , Th17 Cells , Wastewater
4.
J Environ Sci (China) ; 85: 156-167, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31471022

ABSTRACT

This study evaluated uranium sequestration performance in iron-rich (30 g/kg) sediment via bioreduction followed by reoxidation. Field tests (1383 days) at Oak Ridge, Tennessee demonstrated that uranium contents in sediments increased after bioreduced sediments were re-exposed to nitrate and oxygen in contaminated groundwater. Bioreduction of contaminated sediments (1200 mg/kg U) with ethanol in microcosm reduced aqueous U from 0.37 to 0.023 mg/L. Aliquots of the bioreduced sediment were reoxidized with O2, H2O2, and NaNO3, respectively, over 285 days, resulting in aqueous U of 0.024, 1.58 and 14.4 mg/L at pH 6.30, 6.63 and 7.62, respectively. The source- and the three reoxidized sediments showed different desorption and adsorption behaviors of U, but all fit a Freundlich model. The adsorption capacities increased sharply at pH 4.5 to 5.5, plateaued at pH 5.5 to 7.0, then decreased sharply as pH increased from 7.0 to 8.0. The O2-reoxidized sediment retained a lower desorption efficiency at pH over 6.0. The NO3--reoxidized sediment exhibited higher adsorption capacity at pH 5.5 to 6.0. The pH-dependent adsorption onto Fe(III) oxides and formation of U coated particles and precipitates resulted in U sequestration, and bioreduction followed by reoxidation can enhance the U sequestration in sediment.


Subject(s)
Biodegradation, Environmental , Soil Pollutants, Radioactive/metabolism , Uranium/metabolism , Geologic Sediments/chemistry , Soil Pollutants, Radioactive/chemistry , Tennessee , Uranium/chemistry
5.
Sci Total Environ ; 671: 208-214, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-30928750

ABSTRACT

In this study, bacterial mercury (Hg) methylation was investigated under the influence of red-tide algae of Skeletonema costatum (S. costatum). The distribution and speciation of total mercury (THg) and methylmercury (MeHg) were profiled by employing Geobacter metallireducens (G. metallireducens GS-15) as the methylating bacteria. G. metallireducens GS-15 showed different capabilities in methylating different inorganic forms of Hg(II) (HgCl2) and Hg(II)-Algae (HgCl2 captured by S. costatum) to MeHg. In the absence of S. costatum, a maximum methylation efficiency of 4.31 ±â€¯0.47% was achieved with Hg(II) of 1-100 µg L-1, while accelerated MeHg formation rate was detected at a higher initial Hg(II) concentration. In the presence of S. costatum, there were distinct changes in the distribution of THg and MeHg by altering the bioavailability of Hg(II) and Hg(II)-Algae. A larger proportion of THg tended to be retained by a higher algal biomass, resulting in decreased methylation efficiencies. The methylation efficiency of Hg(II) decreased from 3.01 ±â€¯0.10% to 1.01 ±â€¯0.01% with 10-mL and 250-mL algal media, and that of Hg(II)-Algae decreased from 0.83 ±â€¯0.13% to 0.22 ±â€¯0.01% with 10-mL and 250-mL Hg(II)-Algae media. Fourier transform infrared spectrometry, surface charge properties and elemental compositions of S. costatum were used to infer that amine, carboxyl and sulfonate functional groups were most likely to interact with Hg(II) through complexation and/or electrostatic attraction. These results suggest that red-tide algae may be an influencing factor on bacterial Hg methylation in eutrophic water bodies.


Subject(s)
Diatoms/metabolism , Geobacter/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Water Pollutants, Chemical/metabolism , Methylation
7.
Environ Geochem Health ; 41(1): 297-308, 2019 Feb.
Article in English | MEDLINE | ID: mdl-29948539

ABSTRACT

Using sodium alginate hydrogel as skeleton, in combination with chitosan and magnetic Fe3O4, a new type of magnetic chitosan/sodium alginate gel bead (MCSB) was prepared. Adsorptive removal of Cu(II) from aqueous solutions was studied by using the MCSB as a promising candidate in environmental application. Different kinetics and isotherm models were employed to investigate the adsorption process. Based on Fourier transform infrared spectroscopy, field-emission scanning electron microscope, CHNS/O elements analysis, vibration magnetometer, and various means of characterization, a comprehensive analysis of the adsorption mechanism was conducted. The MCSB had a good magnetic performance with a saturation magnetization of 12.5 emu/g. Elemental analysis proved that the addition of chitosan introduced a considerable amount of nitrogen-rich groups, contributing significantly to copper adsorption onto gel beads. The contact time necessary for adsorption was optimized at 120 min to achieve equilibrium. Experimental data showed that the adsorption process agreed well with the Langmuir isotherm model and the pseudo-second-order kinetics model. The theoretical maximum adsorption capacity of MCSB for Cu(II) could reach as high as 124.53 mg/g. In conclusion, the MCSB in this study is a novel and promising composite adsorbent, which can be applied for practical applications in due course.


Subject(s)
Alginates/chemistry , Chitosan/chemistry , Copper/isolation & purification , Nanospheres/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Hydrogen-Ion Concentration , Kinetics , Magnetite Nanoparticles/chemistry , Magnetite Nanoparticles/ultrastructure , Nanospheres/ultrastructure , Thermodynamics
8.
Chemosphere ; 216: 179-185, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30368082

ABSTRACT

Algae and mercury (Hg) are ubiquitous in marine environments. In this study, we investigated the effects of a typical marine algae of diatom Skeletonema costatum on Hg methylation by an iron-reducing bacterium of Geobacter sulfurreducens (G. sulfurreducens) PCA. In the absence of Skeletonema costatum, the bacterial MeHg production rate maximized at 104.06 ±â€¯11.7 ng L-1 h-1 with a high Hg level, while the highest methylation efficiency was achieved at a low Hg concentration. The existence of Skeletonema costatum greatly inhibited the capability of G. sulfurreducens PCA to methylate Hg. With the increase in algal biomass, there was a significant mitigation of MeHg formation and Hg0 release, leaving a considerable proportion of immobilized Hg2+ species (up to 47%) associated with algal cell materials. These results suggest that marine algae are crucial in determining the bioavailability of Hg contaminants and the methylating potential of G. sulfurreducens PCA.


Subject(s)
Diatoms/pathogenicity , Geobacter/metabolism , Mercury/metabolism , Methylmercury Compounds/metabolism , Biological Availability , Biomass , Cyanobacteria/metabolism , Methylation
9.
Chemosphere ; 212: 262-271, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30145418

ABSTRACT

Academics researchers and "citizen scientists" from 22 countries confirmed that yellow mealworms, the larvae of Tenebrio molitor Linnaeus, can survive by eating polystyrene (PS) foam. More detailed assessments of this capability for mealworms were carried out by12 sources: five from the USA, six from China, and one from Northern Ireland. All of these mealworms digested PS foam. PS mass decreased and depolymerization was observed, with appearance of lower molecular weight residuals and functional groups indicative of oxidative transformations in extracts from the frass (insect excrement). An addition of gentamycin (30 mg g-1), a bactericidal antibiotic, inhibited depolymerization, implicating the gut microbiome in the biodegradation process. Microbial community analyses demonstrated significant taxonomic shifts for mealworms fed diets of PS plus bran and PS alone. The results indicate that mealworms from diverse locations eat and metabolize PS and support the hypothesis that this capacity is independent of the geographic origin of the mealworms, and is likely ubiquitous to members of this species.


Subject(s)
Bacteria/metabolism , Biodegradation, Environmental , Coleoptera/metabolism , Gastrointestinal Microbiome/physiology , Larva/metabolism , Polystyrenes/metabolism , Animals , Anti-Bacterial Agents/pharmacology , Bacteria/drug effects , China , Coleoptera/growth & development , Gastrointestinal Microbiome/drug effects , Gentamicins/pharmacology , Larva/growth & development
10.
Nanoscale Res Lett ; 12(1): 583, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-29110246

ABSTRACT

Three kinds of functional monomers, 4-vinylpridine(4-VP), 2-(allylthio)nicotinic acid(ANA), and 2-Acetamidoacrylic acid(AAA), were used to synthetize palladium(II) ion-imprinted polymeric nanospheres (Pd(II) IIPs) via precipitation-polymerization method in order to study the effects of different functional monomers on the adsorption properties of ion-imprinted materials. The results of UV spectra in order to study the interaction between template ion PdCl42- and functional monomers showed that there were great differences in structure after the template reacted with three functional monomers, 4-VP and ANA caused a large structural change, while AAA basically did not change. Further results on the adsorption performance of Pd(II) IIPs on Pd(II) confirmed 4-VP was the most promising candidate for the synthesis of Pd(II) IIPs with an adsorption capacity of 5.042 mg/g as compared with ANA and AAA. The influence of operating parameters on Pd(II) IIP's performance on Pd(II) adsorption was investigated. There was an increase in the adsorption capacity of Pd(II) IIPs at higher pH, temperature, and initial concentration of Pd(II). The results of multi-metal competitive adsorption experiments showed that Pd(II) IIPs had selectivity for Pd(II). An adsorption equilibrium could be reached at 180 min. Kinetic analysis showed that the adsorption test data fitted best to the pseudo-second order kinetic model, and the theoretical equilibrium adsorption capacity was about 5.085 mg/g. The adsorption isotherms of Pd(II) by Pd(II) IIPs agreed well with the Freundlich equation, suggesting a favorable adsorption reaction under optimal conditions. These results showed that Pd(II) IIPs have potential application in the removal of Pd(II) from aqueous solutions and may provide some information for the selection of functional monomers in the preparation of Pd(II) IIPs.

12.
Bioresour Technol ; 192: 611-7, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26093255

ABSTRACT

Sewage sludge and bagasse were used as raw materials to produce cheap and efficient adsorbent with great adsorption capacity of Pb(2+). By pyrolysis at 800 °C for 0.5 h, the largest surface area (806.57 m(2)/g) of the adsorbent was obtained, enriched with organic functional groups. The optimal conditions for production of the adsorbent and adsorption of Pb(2+) were investigated. The results of adsorb-ability fitted the Langmuir isotherm and pseudo-second-order model well. The highest Pb(2+) (at pH = 4.0) adsorption capacity was achieved by treating with 60% (v/v) HNO3. This is a promising approach for metal removal from wastewater, as well as recycling sewage sludge and bagasse to ease their disposal pressure.


Subject(s)
Cellulose/chemistry , Charcoal/chemistry , Lead/isolation & purification , Saccharum/chemistry , Water Pollutants, Chemical/isolation & purification , Water Purification/methods , Adsorption , Industrial Waste/prevention & control , Ions/isolation & purification , Lead/chemistry , Sewage/chemistry , Ultrafiltration/methods , Wastewater , Water Pollutants, Chemical/chemistry
13.
Crit Rev Microbiol ; 41(2): 140-9, 2015 Jun.
Article in English | MEDLINE | ID: mdl-23915280

ABSTRACT

Heavy metal contamination has become a worldwide environmental concern due to its toxicity, non-degradability and food-chain bioaccumulation. Conventional physical and chemical treatment methods for heavy metal removal have disadvantages such as cost-intensiveness, incomplete removal, secondary pollution and the lack of metal specificity. Microbial biomass-based biosorption is one of the approaches gaining increasing attention because it is effective, cheap, and environmental friendly and can work well at low concentrations. To enhance the adsorption properties of microbial cells to heavy metal ions, the cell surface display of various metal-binding proteins/peptides have been performed using a cell surface engineering approach. The surface engineering of Gram-negative bacteria, Gram-positive bacteria and yeast towards the adsorption of heavy metals are reviewed in this article. The problems and future perspectives of this technology are discussed.


Subject(s)
Bacteria/metabolism , Cell Surface Display Techniques/methods , Environmental Pollutants/metabolism , Membrane Proteins/metabolism , Metabolic Engineering/methods , Metals, Heavy/metabolism , Saccharomyces cerevisiae/metabolism , Adsorption , Bacteria/chemistry , Bacteria/genetics , Biotechnology/methods , Environmental Pollutants/toxicity , Membrane Proteins/chemistry , Membrane Proteins/genetics , Metals, Heavy/toxicity , Saccharomyces cerevisiae/chemistry , Saccharomyces cerevisiae/genetics
14.
Chem Commun (Camb) ; 50(84): 12730-3, 2014 Oct 28.
Article in English | MEDLINE | ID: mdl-25200048

ABSTRACT

A macrocyclic aromatic pyridine pentamer was found to exhibit patterned recognition of metal ions and efficiently extract larger ions, such as Cs(+), Ba(2+), Tl(+), Au(+), K(+) and Rb(+) preferentially over the other 18 smaller metal ions from the aqueous phase into the chloroform layer.

15.
J Hazard Mater ; 264: 1-7, 2014 Jan 15.
Article in English | MEDLINE | ID: mdl-24269969

ABSTRACT

Based on environmental and energetic analysis, a novel combined approach using bioelectrochemical systems (BES) followed by electrolysis reactors (ER) was tested for heavy metals removal from fly ash leachate, which contained high detectable levels of Zn, Pb and Cu according to X-ray diffraction analysis. Acetic acid was used as the fly ash leaching agent and tested under various leaching conditions. A favorable condition for the leaching process was identified to be liquid/solid ratio of 14:1 (w/w) and leaching duration 10h at initial pH 1.0. It was confirmed that the removal of heavy metals from fly ash leachate with the combination of BESs and ER is feasible. The metal removal efficiency was achieved at 98.5%, 95.4% and 98.1% for Cu(II), Zn(II), and Pb(II), respectively. Results of scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) indicated that Cu(II) was reduced and recovered mainly as metal Cu on cathodes related to power production, while Zn(II) and Pb(II) were not spontaneously reduced in BESs without applied voltage and basically electrolyzed in the electrolysis reactors.


Subject(s)
Electrolysis , Metals, Heavy/isolation & purification , Waste Disposal, Fluid/methods , Coal Ash/chemistry , Feasibility Studies
16.
Bioresour Technol ; 152: 530-3, 2014.
Article in English | MEDLINE | ID: mdl-24314602

ABSTRACT

Pseudomonas sp. WYZ-2 was isolated from a biocathode which accelerating azo dye decolorization. When the electrode was polarized at -0.8 V (vs. SCE), WYZ-2 could exist on electrode, because the current of working electrode stabilized at -0.35 mA from -0.13 mA after inoculation. Moreover, cyclic voltammetry scanned an unidentified redox-active molecule which involved in the electron charge transfer potentially. On azo dye decolorization experiments by WYZ-2 modified electrode, electrochemical tests also indicated that the catalytic ability of WYZ-2 modified electrode was improved because charge transfer resistance decreased to 255 Ω from 720 Ω, azo dye reduction potential was shifted to -0.78 V from -0.89 V, and the maximum decolorization efficiency of azo dye was increased to 93.4% from 53.2%, comparing with unmodified electrode. Although numerous studies on azo dye decolorization employed biological agents, electrochemical activity bacteria accelerate the decolorization process using electrode as sole electron source has seldom been reported.


Subject(s)
Azo Compounds/chemistry , Coloring Agents/chemistry , Electrons , Pseudomonas/isolation & purification , Pseudomonas/metabolism , Biodegradation, Environmental , Electricity , Electrochemical Techniques , Electrodes , Spectrophotometry, Ultraviolet
17.
Biotechnol Lett ; 36(4): 761-6, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24322773

ABSTRACT

A Pseudomonas putida whole-cell bioreporter for detecting bioavailable copper was constructed by inserting a CueR-regulated sensor element upstream of a promoterless green fluorescent protein (GFP) reporter gene. The constructed bioreporter cells expressed GFP only in response to Cu and Ag when cultivated in different metal salt solutions. M9 supplemented medium provided higher sensitivity compared with LB medium. The optimal test condition was cell suspension with an OD600 of 0.4-0.5 incubated at 30 °C. The detection range of Cu is 1-70 mg/l under optimal test condition in M9 supplemented medium.


Subject(s)
Biosensing Techniques/methods , Copper/analysis , Green Fluorescent Proteins/analysis , Pseudomonas putida/chemistry , Pseudomonas putida/drug effects , Artificial Gene Fusion , Copper/metabolism , Culture Media/chemistry , Genes, Reporter , Green Fluorescent Proteins/genetics , Promoter Regions, Genetic , Pseudomonas putida/genetics
18.
Biotechnol Lett ; 35(8): 1253-8, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23609235

ABSTRACT

The metalloprotein, CadR, was redesigned to optimize cadmium and mercury specificity of CadR-based E. coli biosensors. By truncating 10 and 21 amino acids from the C-terminal extension of CadR, CadR-TC10 and CadR-TC21 were obtained, respectively. The genes cadR, cadR-TC10 and cadR-TC21 were used as sensing elements to construct green fluorescent protein based E.coli biosensors. Induction at 30 °C for 4 h in supplemented M9 medium was the optimized condition for the biosensor. Compared with CadR-based biosensor, there was a clear decline in induction coefficient for CadR-TC21-based biosensor (decreased by 86 % in Zn(II), 44 % in Hg(II), and only 37 % in Cd(II)). While in CadR-TC10-based biosensor, the induction coefficient decreased by 95 % in Zn(II), 70 % in Hg(II), and 67 % in Cd(II). Improved performances of CadR mutants based E. coli biosensors indicated that truncating C-terminal extension of CadR could improve the specificity.


Subject(s)
Biosensing Techniques/methods , Cadmium/analysis , Escherichia coli Proteins/genetics , Escherichia coli/drug effects , Escherichia coli/genetics , Mercury/analysis , Transcription Factors/genetics , Artificial Gene Fusion , Environmental Pollutants/analysis , Escherichia coli Proteins/metabolism , Genes, Reporter , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Metabolic Engineering/methods , Transcription Factors/metabolism
19.
J Hazard Mater ; 254-255: 236-241, 2013 Jun 15.
Article in English | MEDLINE | ID: mdl-23611804

ABSTRACT

This study confirmed the feasibility of natural limonite working as the iron catalyst for the PNP wastewater treatment in the BES-Fenton system. After the start-up period of the BES-Fenton systems, air and limonite powder were injected into the cathode chamber as the original materials for manufacturing Fenton reagents of H2O2 and Fe(II) respectively. The experiment parameters like pH, external resistance, limonite dosage and initial PNP concentration were investigated in this research. The removal efficiency of PNP (0.25 mM) could achieve 96% in 6h under the optimal experimental conditions. A limonite dosage of 112 mg per 50 ml of PNP solution at 0.25 mM concentration each time could sustain 7 cycles of the BES-Fenton system operation with PNP removal efficiency >94%. This study suggests an efficiency and cost-effective approach for the PNP removal by using the natural limonite as the iron catalyst of the BES-Fenton system.


Subject(s)
Ferric Compounds/chemistry , Nitrophenols/chemistry , Water Pollutants, Chemical/chemistry , Hydrogen Peroxide/chemistry , Hydrogen-Ion Concentration , Waste Disposal, Fluid/methods
20.
Chemosphere ; 89(10): 1177-82, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22944254

ABSTRACT

The cathodic reduction of complex-state copper(II) was investigated in a dual chamber microbial fuel cell (MFC). The inner resistance of MFC system could be reduced in the presence of ionizing NH(4)(+), however, mass transfer was hindered at higher ammonia concentration. Thermodynamic and electrochemical analyses indicated that the processes of complex dissociation and copper reduction were governed by the ratio of T[Cu]:T[NH(3)] and the pH of solution. The reduction of Cu(NH(3))(4)(2+) could be achieved via two possible pathways: (1) releasing Cu(2+) from Cu(NH(3))(4)(2+), then reducing Cu(2+) to Cu or Cu(2)O and (2) Cu(NH(3))(4)(2+) accepting an electron and forming Cu(NH(3))(2)(+), and depositing as Cu or Cu(2)O consequently. At initial concentration of 350 mg T[Cu] L(-1), copper removal efficiency of 96% was obtained at pH=9.0 within 12 h (with △Cu/△COD=1.24), 84% was obtained at pH=3.0 within 8 h (with △Cu/△COD=1.72). Cu(NH(3))(4)(2+) was reduced as polyhedral deposits on the cathode.


Subject(s)
Ammonia/chemistry , Bioelectric Energy Sources , Copper/chemistry , Wastewater/chemistry , Water Pollutants, Chemical/chemistry , Ammonia/analysis , Copper/analysis , Electrochemical Techniques , Industrial Waste/analysis , Waste Disposal, Fluid/methods , Water Pollutants, Chemical/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...