Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
J Hepatocell Carcinoma ; 11: 1251-1263, 2024.
Article in English | MEDLINE | ID: mdl-38979083

ABSTRACT

Purpose: This study aimed to assess the prognostic significance of alpha-fetoprotein (AFP) response in patients with unresectable hepatocellular carcinoma (u-HCC) who underwent hepatic artery infusion chemotherapy (HAIC) combined with lenvatinib and camrelizumab. Methods: A retrospective review was conducted on patients with u-HCC receiving treatment with HAIC combined with lenvatinib and camrelizumab. Early AFP response was defined as a >20% decrease in AFP within 4 weeks, and AFP response as a >75% decrease in AFP within 8 weeks. The correlation between early AFP response, AFP response, therapeutic response, overall survival (OS), and progression-free survival (PFS) was investigated. Results: The study included 63 patients. AFP responders exhibited superior objective response rates compared to AFP non-responders, as determined by RECIST v1.1 or mRECIST criteria (45.5 vs. 18.2%, p=0.014, or 81.8 vs. 48.5%, p=0.013). Furthermore, early AFP responders demonstrated prolonged OS (not reached vs. 8.0 months, p<0.001) and PFS (13.3 vs. 3.0 months, p= 0.018) relative to early AFP non-responders. Similarly, AFP responders exhibited improved OS (not reached vs. 9.0 months, p<0.001) and PFS (19.3 vs. 5.1 months, p=0.002) compared to AFP non-responders. Multivariate analysis results indicated that both early AFP response and AFP response independently predicted OS [hazard ratio (HR) 2.963, 95% confidence interval (CI) 1.333-6.585, p=0.008, and HR 6.182, 95% CI 1.780-21.466, p=0.004] and PFS (HR 2.186, 95% CI 1.107-4.318, p=0.024, and HR 3.078, 95% CI 1.407-6.730, p=0.005), serving as significant prognostic values. Conclusion: Early AFP response and AFP response serve as predictive biomarkers for the effectiveness of HAIC combined with lenvatinib and camrelizumab in patients with u-HCC.

2.
Mol Cell Biochem ; 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38393538

ABSTRACT

Diffuse large B-cell lymphoma (DLBCL) is the leading cause of mortality from invasive hematological malignancies worldwide. MicroRNA-7-5p (miR-7-5p) has been shown to be a tumor suppressor in several types of tumors. However, its role in DLBCL is not fully understood. This study explored the role of miR-7-5p in the progression of DLBCL and pursued the underlying mechanism. Quantitative real-time PCR and transfection of miRNA mimic and inhibitors were used to assess the effects of miR-7-5p on autophagy and apoptosis in SU-DHL-4 and SU-DHL-10 cells. Dual-luciferase reporter assay was used to identify target genes of miR-7-5p. Immunofluorescence, flow cytometry, and western blotting (WB) were performed to explore the underlying mechanism and downstream pathways of miR-7-5p and AMBRA1 in DLBCL cells. MiR-7-5p was upregulated in DLBCL cells. Luciferase reporter assays implicated AMBRA1 as a downstream target of miR-7-5p in DLBCL. WB and flow cytometry showed that an increase in miR-7-5p level and a decrease in AMBRA1 expression led to a decrease in autophagy and apoptosis-related protein expression. Furthermore, miR-7-5p prevented c-MYC dephosphorylation through AMBRA1 downregulation. On the contrary, c-MYC increased the expression of miR-7-5p, thereby establishing positive feedback on miR-7-5p transcription. The addition of hydroxychloroquine, an autophagy inhibitor, reduced autophagy and increased apoptosis in DLBCL cells. In vivo experiments further proved that the increase of miR-7-5p played a regulatory role in the expression of downstream AMBRA1 and c-MYC. These results demonstrate that c-MYC-dependent MiR-7-5p suppressed autophagy and apoptosis by targeting AMBRA1 in DLBCL cells. MiR-7-5p also suppressed autophagy and apoptosis by targeting AMBRA1 in DLBCL cells. Therefore, these data suggest that targeting miR-7-5p may be a promising strategy in DLBCL therapy.

3.
J Hepatocell Carcinoma ; 10: 2049-2058, 2023.
Article in English | MEDLINE | ID: mdl-37965074

ABSTRACT

Purpose: This study aimed to assess the prognostic significance of the neutrophil-lymphocyte ratio (NLR) in patients with unresectable hepatocellular carcinoma (u-HCC) treated with hepatic artery infusion chemotherapy (HAIC) combined with lenvatinib and camrelizumab. Patients and Methods: We conducted a retrospective cohort study involving patients diagnosed with u-HCC who underwent HAIC combined with lenvatinib and camrelizumab. Patients were stratified into two cohorts using the median NLR as the cutoff point. We then assessed treatment response, overall survival (OS), progression-free survival (PFS), and adverse events in these patient groups. Results: Between October 2020 and April 2022, a total of 88 patients were enrolled in the study. The overall cohort exhibited a median PFS of 7.9 months, while the median OS was not reached, and a median NLR of 3.46. Notably, the group with NLR<3.46 demonstrated significantly superior OS (not reached vs 9.6 months, p = 0.017) and PFS (18.3 vs 5.3 months, p = 0.0015) compared to the NLR≥3.46 group. Furthermore, multivariate analysis revealed that an alpha-fetoprotein (AFP) ≥ 400 ng/mL [hazard ratio (HR), 2.133; 95% confidence interval (CI), 1.102-4.126; p = 0.024], Barcelona Clinical Hepatocellular Carcinoma (BCLC) stage C (HR, 2.319; 95% CI, 1.128-4.764; p = 0.022), and NLR ≥3.46 (HR, 2.35; 95% CI, 1.239-4.494; p = 0.009) were identified as independent risk factors for OS. Additionally, multivariate analysis demonstrated that AFP ≥ 400 ng/mL, BCLC stage C, and NLR ≥ 3.46 were independent negative factors of PFS. Conclusion: NLR can be associated with outcomes in patients with u-HCC treated with HAIC combined with lenvatinib and camrelizumab.

4.
Clin Cosmet Investig Dermatol ; 16: 2429-2432, 2023.
Article in English | MEDLINE | ID: mdl-37694194

ABSTRACT

Patients treated with immune checkpoint inhibitors (ICIS) are prone to immune related adverse events (irAEs), making it important to pay attention to these adverse events. Herein, we report a case of onychopathy after treatment of extensive small cell lung cancer (ES-SCLC) with durvalumab; this is the first report of onychopathy caused by durvalumab in a patient with lung cancer. The change in the patient's nails mainly manifested in the form of pigmentation and the thickening of the nails. Antifungal ointment was ineffective, and these changes were unrelated to malnutrition or any other factors. In addition, this case shows that onychopathy may occur within 2 years after treatment, indicating that these patients need long-term follow-up.

5.
J Int Med Res ; 50(11): 3000605221132703, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36380511

ABSTRACT

OBJECTIVE: To conduct a network meta-analysis of randomised controlled trials to determine the optimal clinical choice of first-line therapy for patients with ALK receptor tyrosine kinase (ALK) gene rearrangement non-small cell lung cancer (NSCLC). METHODS: Clinical trials in patients with histologically confirmed ALK gene rearrangement NSCLC, that included ALK inhibitors as first-line therapy, were identified using database searches. A Bayesian network meta-analysis was conducted to calculate the efficacy and safety of the included first-line treatments. RESULTS: Nine trials with 2,407 patients were included for analyses. Lorlatinib was better than brigatinib for progression-free survival (PFS) (hazard ratio 0.79, 95% confidence interval 0.63, 0.98). In subgroup analyses, lorlatinib exhibited the highest probability of best PFS ranking in patients with or without baseline brain metastases (38% and 80%, respectively); brigatinib had the highest probability of best PFS ranking among Asian patients (47%). Alectinib offered the highest survival advantage (57% probability), while lorlatinib was likely to be the best treatment for an objective response (41% probability). Alectinib displayed the highest probability of being ranked lowest for grade ≥3 adverse events (86%). CONCLUSIONS: Lorlatinib was associated with the best PFS overall, and was suitable for patients with or without brain metastases. Brigatinib was associated with the best PFS in Asian patients.


Subject(s)
Brain Neoplasms , Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Humans , Anaplastic Lymphoma Kinase/genetics , Bayes Theorem , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Gene Rearrangement , Lactams, Macrocyclic/adverse effects , Lung Neoplasms/drug therapy , Lung Neoplasms/genetics , Lung Neoplasms/pathology , Network Meta-Analysis , Protein Kinase Inhibitors/adverse effects , Randomized Controlled Trials as Topic
6.
Exp Mol Med ; 54(11): 2077-2091, 2022 11.
Article in English | MEDLINE | ID: mdl-36443565

ABSTRACT

Necroptosis is the major cause of death in alveolar epithelial cells (AECs) during acute lung injury (ALI). Here, we report a previously unrecognized mechanism for necroptosis. We found an accumulation of mitochondrial citrate (citratemt) in lipopolysaccharide (LPS)-treated AECs because of the downregulation of Idh3α and citrate carrier (CIC, also known as Slc25a1). shRNA- or inhibitor-mediated inhibition of Idh3α and Slc25a1 induced citratemt accumulation and necroptosis in vitro. Mice with AEC-specific Idh3α and Slc25a1 deficiency exhibited exacerbated lung injury and AEC necroptosis. Interestingly, the overexpression of Idh3α and Slc25a1 decreased citratemt levels and rescued AECs from necroptosis. Mechanistically, citratemt accumulation induced mitochondrial fission and excessive mitophagy in AECs. Furthermore, citratemt directly interacted with FUN14 domain-containing protein 1 (FUNDC1) and promoted the interaction of FUNDC1 with dynamin-related protein 1 (DRP1), leading to excessive mitophagy-mediated necroptosis and thereby initiating and promoting ALI. Importantly, necroptosis induced by citratemt accumulation was inhibited in FUNDC1-knockout AECs. We show that citratemt accumulation is a novel target for protection against ALI involving necroptosis.


Subject(s)
Acute Lung Injury , Alveolar Epithelial Cells , Mice , Animals , Alveolar Epithelial Cells/metabolism , Lipopolysaccharides/adverse effects , Necroptosis , Citric Acid/adverse effects , Citric Acid/metabolism , Acute Lung Injury/chemically induced , Acute Lung Injury/genetics , Mitochondrial Proteins/metabolism , Membrane Proteins/metabolism
7.
Oxid Med Cell Longev ; 2022: 7265486, 2022.
Article in English | MEDLINE | ID: mdl-36275905

ABSTRACT

Background: Epoxyeicosatrienoic acids (EETs), the metabolite of arachidonic acid by cytochrome P450 (CYP), reportedly serve as a vital endogenous protective factor in several chronic diseases. EETs are metabolized by soluble epoxide hydrolase (sEH). We have observed that prophylactic blocking sEH alleviates bleomycin- (BLM-) induced pulmonary fibrosis (PF) in mice. However, the underlying mechanism and therapeutic effects of EETs on PF remain elusive. Objective: In this study, we investigated the effect of CYP2J2/EETs on the activation of murine fibroblasts and their mechanisms. Results: we found that administration of the sEH inhibitor (TPPU) 7 days after the BLM injection also reversed the morphology changes and collagen deposition in the lungs of BLM-treated mice, attenuating PF. Fibroblast activation is regarded as a critical role of PF. Therefore, we investigated the effects of EETs on the proliferation and differentiation of murine fibroblasts. Results showed that the overexpression of CYP2J2 reduced the cell proliferation and the expressions of α-SMA and PCNA induced by transforming growth factor- (TGF-) ß1 in murine fibroblasts. Then, we found that EETs inhibited the proliferation and differentiation of TGF-ß1-treated-NIH3T3 cells and primary murine fibroblasts. Mechanistically, we found that 14,15-EET disrupted the phosphorylation of Smad2/3 murine fibroblasts by activating PPARγ, which was completely abolished by a PPARγ inhibitor GW9662. Conclusion: our study shows that EETs inhibit the activation of murine fibroblasts by blocking the TGF-ß1-Smad2/3 signaling in a PPARγ-dependent manner. Regulating CYP2J2-EET-sEH metabolic pathway may be a potential therapeutic option in PF.


Subject(s)
Pulmonary Fibrosis , Transforming Growth Factor beta1 , Animals , Mice , Arachidonic Acids/pharmacology , Bleomycin/adverse effects , Collagen/metabolism , Cytochrome P-450 Enzyme System/metabolism , Epoxide Hydrolases/metabolism , Fibroblasts/metabolism , NIH 3T3 Cells , PPAR gamma/metabolism , Proliferating Cell Nuclear Antigen/metabolism , Pulmonary Fibrosis/pathology , Transforming Growth Factor beta1/metabolism
8.
Oxid Med Cell Longev ; 2022: 5042762, 2022.
Article in English | MEDLINE | ID: mdl-35677107

ABSTRACT

Fibrosis is a common pathological outcome of chronic injuries, characterized by excessive deposition of extracellular matrix components in organs, as seen in most chronic inflammatory diseases. At present, there is an increasing tendency of the morbidity and mortality of diseases caused by fibrosis, but the treatment measures for fibrosis are still limited. Fibroblast growth factor 21 (FGF21) belongs to the FGF19 subfamily, which also has the name endocrine FGFs because of their endocrine manner. In recent years, it has been found that plasma FGF21 level is significantly correlated with fibrosis progression. Furthermore, there is evidence that FGF21 has a pronounced antifibrotic effect in a variety of fibrotic diseases. This review summarizes the biological effects of FGF21 and discusses what is currently known about this factor and fibrosis disease, highlighting emerging insights that warrant further research.


Subject(s)
Fibroblast Growth Factors , Klotho Proteins , Fibroblast Growth Factors/metabolism , Fibroblast Growth Factors/therapeutic use , Fibrosis , Humans
9.
Sci Rep ; 11(1): 23047, 2021 11 29.
Article in English | MEDLINE | ID: mdl-34845308

ABSTRACT

Evidence regarding the need for surgery for primary intestinal non-Hodgkin lymphoma (PINHL) patients with chemotherapy is limited and controversial. We aimed to investigate the specific impact of surgery on survival of PINHL patients. Data from PINHL patients (aged > 18 years) with chemotherapy between 1983 and 2015 were extracted from the Surveillance, Epidemiology, and End Results (SEER) database. We concerned about overall survival (OS) and improved cancer-specific survival (CSS). Propensity score matching (PSM) analysis was also used to explore the reliability of the results to further control for confounding factors. Finally, we screened 3537 patients. Multivariate regression analysis showed that patients with surgery and chemotherapy had better OS (hazard ratio [HR] 0.83; 95% confidence interval [CI] 0.75-0.93; p = 0.0009) and CSS (HR 0.87; 95% CI 0.77-0.99; p = 0.0404) compared with the non-operation group after adjusting for confounding factors. After PSM analysis, compared with non-surgery, surgery remained associated with improved OS (HR 0.77; 95% CI 0.68-0.87; p < 0.0001) and improved CSS (HR 0.82; 95% CI 0.72-0.95; p = 0.008) adjusted for baseline differences. In the large cohort of PINHL patients with chemotherapy older than 18 years, surgery was associated with significantly improved OS and CSS before and after PSM analysis.


Subject(s)
Intestinal Neoplasms/epidemiology , Intestinal Neoplasms/surgery , Lymphoma, Non-Hodgkin/epidemiology , Lymphoma, Non-Hodgkin/surgery , SEER Program , Adult , Aged , Databases, Factual , Female , Humans , Intestinal Neoplasms/mortality , Lymphoma, Non-Hodgkin/mortality , Male , Middle Aged , Multivariate Analysis , Propensity Score , Proportional Hazards Models , Retrospective Studies , Risk Factors , United States
10.
PeerJ ; 9: e12339, 2021.
Article in English | MEDLINE | ID: mdl-34754622

ABSTRACT

BACKGROUND: The anti-tumor properties of curcumin have been demonstrated for many types of cancer. However, a systematic functional and biological analysis of its target proteins has yet to be fully documented. The aim of this study was to explore the underlying mechanisms of curcumin and broaden the perspective of targeted therapies. METHODS: Direct protein targets (DPTs) of curcumin were searched in the DrugBank database. Using the STRING database, the interactions between curcumin and DPTs and indirect protein targets (IPTs) weres documented. The protein-protein interaction (PPI) network of curcumin-mediated proteins was visualized using Cytoscape. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis was performed for all curcumin-mediated proteins. Furthermore, the cancer targets were searched in the Comparative Toxicogenomics Database (CTD). The overlapping targets were studied using Kaplan-Meier analysis to evaluate cancer survival. Further genomic analysis of overlapping genes was conducted using the cBioPortal database. Lastly, MTT, quantitative polymerase chain reaction (qPCR), and western blot (WB) analysis were used to validate the predicted results on hepatocellular carcinoma (HCC) cells. RESULTS: A total of five DPTs and 199 IPTs were found. These protein targets were found in 121 molecular pathways analyzed via KEGG enrichment. Based on the anti-tumor properties of curcumin, two pathways were selected, including pathways in cancer (36 genes) and HCC (22 genes). Overlapping with 505 HCC-related gene sets identified in CTD, five genes (TP53, RB1, TGFB1, GSTP1, and GSTM1) were finally identified. High mRNA levels of TP53, RB1, and GSTM1 indicated a prolonged overall survival (OS) in HCC, whereas elevated mRNA levels of TGFB1 were correlated with poor prognosis. The viability of both HepG2 cells and Hep3B cells was significantly reduced by curcumin at concentrations of 20 or 30 µM after 48 or 72 h of culture. At a concentration of 20 µM curcumin cultured for 48 h, the expression of TGFB1 and GSTP1 in Hep3B cells was reduced significantly in qPCR analysis, and reduced TGFB1 protein expression was also found in Hep3B cells.

11.
Int Immunopharmacol ; 101(Pt B): 108372, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34810128

ABSTRACT

Citrate has a prominent role as a substrate in cellular energy metabolism. Recently, citrate has been shown to drive inflammation. However, the role of citrate in lipopolysaccharide (LPS)-induced acute lung injury (ALI) remains unclear. Here, we aimed to clarify whether extracellular citrate aggravated the LPS-induced ALI and the potential mechanism. Our findings demonstrated that extracellular citrate aggravated the pathological lung injury induced by LPS in mice, characterized by up-regulation of pro-inflammatory factors and over-activation of NACHT, LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome in the lungs. In vitro, we found that citrate treatment significantly augmented the expression of NLRP3 and pro-IL-1ß and enhanced the translocation of NF-κB/p65 into the nucleus. Furthermore, extracellular citrate plus adenosine-triphosphate (ATP) significantly increased the production of reactive oxygen species (ROS) in primary murine macrophages. Inhibiting the production of ROS with a ROS scavenger N-acetyl-L-cysteine (NAC) attenuated the activation of NLRP3 inflammasome. Altogether, we conclude that extracellular citrate may serve as a damage-associated molecular pattern (DAMP) and aggravates LPS-induced ALI by activating the NLRP3 inflammasome.


Subject(s)
Alarmins/metabolism , Citric Acid/metabolism , Lipopolysaccharides/toxicity , Lung Injury/chemically induced , Macrophage Activation/physiology , Macrophages/drug effects , Adenosine Triphosphate , Animals , Cytokines/genetics , Cytokines/metabolism , Gene Expression Regulation/drug effects , Lung Injury/metabolism , Lung Injury/pathology , Male , Mice , Mice, Inbred C57BL , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Random Allocation
12.
Int Immunopharmacol ; 101(Pt B): 108211, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34634687

ABSTRACT

Vasoactive intestinal peptide (VIP) is an intrapulmonary neuropeptide with multi-function, including anti-fibrosis. However, the exact role of VIP in pulmonary fibrosis has not been documented. Here, we investigated the protective effect of VIP against pulmonary fibrosis in a murine model induced by bleomycin (BLM). We found that the overexpression of VIP mediated by the adenoviral vector significantly attenuated the lung tissue destruction, reduced the deposition of the extracellular matrix, and inhibited the expression of alpha-smooth muscle actin (α-SMA) in the lungs of mice received BLM. Mechanismly, we found that VIP significantly suppressed the transforming growth factor-beta 1 (TGF-ß1)-induced epithelial-mesenchymal transition (EMT) and inhibited the matrix-producing ability of alveolar epithelial cells in vitro. Furthermore, we found that TGF-ß1 depressed the autophagy and an autophagy inductor partly reversed the TGF-ß1-induced EMT in alveolar epithelial cells. The impaired autophagy was also observed in the lungs of BLM-treated mice, which was restored by VIP treatment. And VIP treatment enhanced autophagy in TGF-ß1-stimulated alveolar epithelial cells, contributing to its anti-EMT effect. In summary, our data, for the first time, show that VIP attenuates BLM-induced pulmonary fibrosis in mice with anti-EMT effect through restoring autophagy in alveolar epithelial cells. This study provides a possibility that inhaled long-acting VIP may be an anti-fibrotic drug in the treatment of pulmonary fibrosis.


Subject(s)
Alveolar Epithelial Cells/drug effects , Bleomycin/toxicity , Epithelial-Mesenchymal Transition/drug effects , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/drug therapy , Vasoactive Intestinal Peptide/therapeutic use , Alveolar Epithelial Cells/physiology , Animals , Antibiotics, Antineoplastic/therapeutic use , Autophagy , Epithelial-Mesenchymal Transition/physiology , Mice , Vasodilator Agents/therapeutic use
13.
ACS Appl Mater Interfaces ; 13(2): 2521-2529, 2021 Jan 20.
Article in English | MEDLINE | ID: mdl-33423461

ABSTRACT

To improve the structural design of electrodes and interlayers for practical applications of Li-S batteries, we report two scalable porous CNT@C membranes for high-energy Li-S batteries. The asymmetric CNT@C (1:2) membrane with both dense and macroporous layers can act as an Al-free cathode for current collection and high sulfur loading, while the symmetric CNT@C (1:1) membrane with hierarchically porous networks can be used as an interlayer to trap lithium polysulfides (LiPSs), thus weakening the shuttle effect by strong adsorption of the N atoms toward LiPSs. The doped N sites in carbon membranes are identified as bifunctional active centers that electrocatalytically accelerate the oxidation of Li2S and polysulfide conversion. First-principles calculations reveal that the pyridinic and pyrrolic N sites exhibit favorable reactivity for strong adsorption/dissociation of polysulfide species. They lead to greatly reduced energy and kinetic barrier for polysulfide conversion without weakening the polysulfide adsorption on the membrane. Using the synergistic circulation groove with the two membranes, the practical S loading can be tailored from 1.2 to 6.1 mg cm-2. The Li-S battery can deliver an areal capacity of 4.6 mA h cm-2 (684 mA h g-1) at 0.2 C even at an ultrahigh S loading of 6.1 mg cm-2 and a lean electrolyte to sulfur ratio of 5.3 µL mg-1. Our work for scalable membrane fabrication and structural design provides a promising strategy for practical applications of high-energy Li-S batteries.

14.
Cancer Manag Res ; 13: 9271-9285, 2021.
Article in English | MEDLINE | ID: mdl-34992453

ABSTRACT

PURPOSE: Primary intestinal non-Hodgkin lymphoma (PINHL) is a biologically and clinically heterogeneous disease. Few individual prediction models are available to establish prognoses for PINHL patients. Herein, a novel nomogram was developed and verified to predict long-term cancer-specific survival (CSS) rates in PINHL patients, and a convenient online risk calculator was created using the nomogram. MATERIALS AND METHODS: Data on PINHL patients from January 1, 2004, to December 31, 2015, obtained from the Surveillance, Epidemiology, and End Results (SEER) database (n = 2372; training cohort), were analyzed by Cox regression to identify independent prognostic parameters for CSS. The nomogram was internally and externally validated in a SEER cohort (n = 1014) and a First Affiliated Hospital of Guangzhou University of Chinese Medicine (FAHGUCM) cohort (n = 37), respectively. Area under the receiver operating characteristic curve (AUC), calibration curves, and decision curve analysis (DCA) were used to evaluate nomogram performance. RESULTS: Five independent predictors were identified, namely, age, marital status, Ann Arbor Stage, B symptoms, and histologic type. The nomogram showed good performance in discrimination and calibration, with C-indices of 0.772 (95% CI: 0.754-0.790), 0.763 (95% CI: 0.734-0.792), and 0.851 (95% CI: 0.755-0.947) in the training, internal validation, and external validation cohorts, respectively. The calibration curve indicated that the nomogram was accurate, and DCA showed that the nomogram had a high clinical application value. AUC values indicated that the prediction accuracy of the nomogram was higher than that of Ann Arbor Stage (training cohort: 0.804 vs 0.630; internal validation cohort: 0.800 vs 0.637; external validation cohort: 0.811 vs 0.598), and Kaplan-Meier curves indicated the same. CONCLUSION: A nomogram was developed to assist clinicians in predicting the survival of PINHL patients and in making optimal treatment decisions. An online calculator based on the nomogram was made available at https://cuifenzhang.shinyapps.io/DynNomapp/.

15.
J Cell Physiol ; 235(12): 9910-9921, 2020 12.
Article in English | MEDLINE | ID: mdl-32452554

ABSTRACT

Epoxyeicosatrienoic acids (EETs) derived from arachidonic acid exert anti-inflammation effects. We have reported that blocking the degradation of EETs with a soluble epoxide hydrolase (sEH) inhibitor protects mice from lipopolysaccharide (LPS)-induced acute lung injury (ALI). The underlying mechanisms remain essential questions. In this study, we investigated the effects of EETs on the activation of nucleotide-binding domain leucine-rich repeat-containing receptor, pyrin domain-containing-3 (NLRP3) inflammasome in murine macrophages. In an LPS-induced ALI murine model, we found that sEH inhibitor 1-trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl), TPPU, profoundly attenuated the pathological injury and inhibited the activation of the NLRP3 inflammasome, characterized by the reduction of the protein expression of NLRP3, ASC, pro-caspase-1, interleukin precursor (pro-IL-1ß), and IL-1ß p17 in the lungs of LPS-treated mice. In vitro, primary peritoneal macrophages from C57BL/6 were primed with LPS and activated with exogenous adenosine triphosphate (ATP). TPPU treatment remarkably reduced the expression of NLRP3 inflammasome-related molecules and blocked the activation of NLRP3 inflammasome. Importantly, four EETs (5,6-EET, 8,9-EET, 11,12-EET, and 14,15-EET) inhibited the activation of NLRP3 inflammasome induced by LPS + ATP or LPS + nigericin in macrophages in various degree. While the inhibitory effect of 5,6-EET was the weakest. Mechanismly, EETs profoundly decreased the content of reactive oxygen species (ROS) and restored the calcium overload in macrophages receiving LPS + ATP stimulation. In conclusion, this study suggests that EETs inhibit the activation of the NLRP3 inflammasome by suppressing calcium overload and ROS production in macrophages, contributing to the therapeutic potency to ALI.


Subject(s)
Acute Lung Injury/drug therapy , Arachidonic Acids/pharmacology , Epoxide Hydrolases/genetics , Fatty Acids, Monounsaturated/pharmacology , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , Acute Lung Injury/genetics , Acute Lung Injury/pathology , Animals , Arachidonic Acid/chemistry , Epoxide Hydrolases/antagonists & inhibitors , Gene Expression Regulation/drug effects , Humans , Inflammasomes/drug effects , Macrophages/drug effects , Macrophages/metabolism , Mice , NLR Family, Pyrin Domain-Containing 3 Protein/antagonists & inhibitors , Phenylurea Compounds/pharmacology , Piperidines/pharmacology
16.
FEBS J ; 287(8): 1666-1680, 2020 04.
Article in English | MEDLINE | ID: mdl-31646730

ABSTRACT

Pulmonary fibrosis (PF) is a senescence-associated disease with poor prognosis. Currently, there is no effective therapeutic strategy for preventing and treating the disease process. Mounting evidence suggests that arachidonic acid (ARA) metabolites are involved in the pathogenesis of various fibrosis. However, the relationship between the metabolism of ARA and PF is still elusive. In this study, we observed a disorder in the cyclooxygenase-2/cytochrome P450 (COX-2/CYP) metabolism of ARA in the lungs of PF mice induced by bleomycin (BLM). Therefore, we aimed to explore the role of COX-2/CYP-derived ARA metabolic disorders in PF. PTUPB, a dual COX-2 and soluble epoxide hydrolase (sEH) inhibitor, was used to restore the balance of COX-2/CYP metabolism. sEH is an enzyme hydrolyzing epoxyeicosatrienoic acids derived from ARA by CYP. We found that PTUPB alleviated the pathological changes in lung tissue and collagen deposition, as well as reduced senescence marker molecules (p16Ink4a and p53-p21Waf1/Cip1 ) in the lungs of mice treated by BLM. In vitro, we found that PTUPB pretreatment remarkably reduced the expression of senescence-related molecules in the alveolar epithelial cells (AECs) induced by BLM. In conclusion, our study supports the notion that the COX-2/CYP-derived ARA metabolic disorders may be a potential therapeutic target for PF via inhibiting the cellular senescence in AECs.


Subject(s)
Aging/drug effects , Cyclooxygenase 2/metabolism , Enzyme Inhibitors/pharmacology , Epoxide Hydrolases/antagonists & inhibitors , Pulmonary Fibrosis/drug therapy , A549 Cells , Animals , Arachidonic Acid/metabolism , Bleomycin , Cellular Senescence/drug effects , Disease Models, Animal , Dose-Response Relationship, Drug , Enzyme Inhibitors/administration & dosage , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Epoxide Hydrolases/metabolism , Humans , Injections, Subcutaneous , Male , Mice , Mice, Inbred C57BL , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...