Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Acta Parasitol ; 2023 Dec 13.
Article in English | MEDLINE | ID: mdl-38087038

ABSTRACT

PURPOSE: Ticks are dangerous ectoparasites for humans and other animals, and tick-borne pathogens of Bactrian camels have been epidemiologically surveyed in Gansu Province, China. We aimed to determine the current distribution of tick-borne pathogens among Bactrian camels in Gansu during August 2013 using molecular tools. METHODS: All ticks underwent morphological identification. We extracted DNA from the blood samples and ticks, screened them for Theileria, Babesia, Anaplasma, and Ehrlichia using standard or nested PCR with specific primers. RESULTS: All ticks collected from the skin were identified as Hyalomma asiaticum. The blood and tick samples harbored similar pathogens, including the Theileria species, T. annulata, T. luwenshuni, T. uilenbergi, and T. capreoli, the Anaplasma species A. bovis and uncultured Anaplasma, the Ehrlichia species E. canis and uncultured Ehrlichia, and a new haplotype of Babesia species. CONCLUSION: Our findings of anaplasmataceae and piroplasmida in Bactrian camels in Gansu provide a theoretical basis for deeper investigation into the epidemiology of tick-borne pathogens in these camels.

2.
Gene ; 820: 146257, 2022 Apr 30.
Article in English | MEDLINE | ID: mdl-35143949

ABSTRACT

Hair follicle development in Tan sheep differs significantly between the birth and Er-mao periods, but the underlying molecular mechanism is still unclear. We profiled the skin transcriptomes of Tan sheep in the birth and Er-mao periods via RNA-seq technology. The Tan sheep examined consisted of three sheep in the birth period and three sheep in the Er-mao period. A total of 364 differentially expressed genes (DEGs) in the skin of Tan sheep between the birth period and the Er-mao period were identified, among which 168 were upregulated and 196 were downregulated. Interestingly, the FOS proto-oncogene (FOS) (fold change = 22.67, P value = 2.15*10^-44) was the most significantly differentially expressed gene. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis found that the FOS gene was significantly enriched in the signaling pathway related to hair follicle development. Immunohistochemical analysis showed that the FOS gene was expressed in the skin of Chinese Tan sheep at the birth and Er-mao periods, with significantly higher expression in the Er-mao period. Our findings suggest that the FOS gene promotes hair follicle development in Tan sheep.


Subject(s)
Hair Follicle/growth & development , Hair Follicle/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Sheep/genetics , Skin/metabolism , Transcriptome , Animals , China , Gene Expression Profiling/methods , Gene Expression Regulation , Genome , Male , Proto-Oncogene Proteins c-fos/genetics , Tissue Culture Techniques/methods
3.
J Vet Med Sci ; 82(2): 115-124, 2020 Feb 04.
Article in English | MEDLINE | ID: mdl-31852859

ABSTRACT

High-producing dairy cows are easily affected by left displacement of the abomasum (LDA) within 4 weeks postpartum. Although LDA is highly associated with metabolic disturbances, the related information on comprehensive metabolic changes, with the exception of some blood biochemical parameters, remains limited. In this study, the changes in plasma metabolites and in the metabolic profile of postpartum dairy cows with LDA were investigated through liquid chromatography coupled with quadrupole time of flight mass spectrometry (LC-Q/TOF-MS)-based metabolomics, and the metabolic networks related to LDA were constructed through metabolomics pathway analysis (MetPA). An obvious change in the metabolic profile was reflected by significant variations in 68 plasma metabolites in postpartum dairy cows with LDA, and these variations consequently altered 13 metabolic pathways (histidine metabolism, tyrosine metabolism, valine, leucine and isoleucine biosynthesis, phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism, tryptophan metabolism, synthesis and degradation of ketone bodies, linoleic acid metabolism, arachidonic acid metabolism, citrate cycle, butanoate metabolism, vitamin B6 metabolism and pyrimidine metabolism). This study shows that the more detailed information obtained by LC-Q/TOF-MS-based metabolomics and MetPA might contribute to a better understanding of the disordered metabolic networks in postpartum dairy cows with LDA.


Subject(s)
Abomasum/pathology , Cattle Diseases/metabolism , Metabolic Networks and Pathways/physiology , Metabolome , Postpartum Period/metabolism , Animals , Biomarkers/blood , Cattle , Cattle Diseases/blood , Chromatography, Liquid/methods , Chromatography, Liquid/veterinary , Female , Mass Spectrometry/methods , Mass Spectrometry/veterinary
4.
Gen Comp Endocrinol ; 242: 101-107, 2017 02 01.
Article in English | MEDLINE | ID: mdl-26482006

ABSTRACT

Melatonin plays crucial roles in a wide range of ovarian physiological functions via the melatonin receptors (MRs). Structure and function of MRs have been well studied in sheep, cattle, and humans, but little information exists on the genetic characterization and function of these receptors in the ovary of the white yak. In the present study, the melatonin receptor MT1 was cloned by RT-PCR in the ovary of white yak; the MT1 cDNA fragment obtained (843bp) comprised an open reading frame (827bp) encoding a protein containing 275 residues, characterized by seven transmembrane regions and an NRY motif, two distinct amino acid replacements were found. The white yak MT1 had a 83.9-98.6% protein sequence identity with that of nine other mammals. Using RT-PCR, the expression levels of MT1, MT2, and LHR in the ovary of pregnant and non-pregnant white yaks were compared, revealing higher levels of all genes in pregnant yaks: 3.83-fold increase for MT1 (P<0.05), 1.39-fold increase for MT2, and 15.32-fold increase for LHR (P<0.05). The distribution of MT1 in yak ovaries was observed using immunohistochemistry on paraffin embedded ovarian sections: MT1 was mainly present on primordial follicles (PF), granulosa cells (GCs), oocytes, and corpus luteum (CL) cells; MT1 expression showed an increasing tendency from PF to GCs to oocytes and to large CL cells. It is suggested that melatonin and MT1 are associated with the corpus luteum function of pregnancy maintenance and follicular development during oocyte maturation in the white yak.


Subject(s)
Cattle/physiology , Gene Expression Regulation/physiology , Receptor, Melatonin, MT1/metabolism , Amino Acid Sequence , Animals , DNA, Complementary/genetics , Female , Granulosa Cells/metabolism , Humans , Melatonin/metabolism , Open Reading Frames , Ovary/metabolism , Pregnancy , RNA, Messenger/metabolism , Receptor, Melatonin, MT1/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...