Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 25(1): 145, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831386

ABSTRACT

BACKGROUND: Single-cell RNA sequencing (scRNA-seq) and spatially resolved transcriptomics (SRT) have led to groundbreaking advancements in life sciences. To develop bioinformatics tools for scRNA-seq and SRT data and perform unbiased benchmarks, data simulation has been widely adopted by providing explicit ground truth and generating customized datasets. However, the performance of simulation methods under multiple scenarios has not been comprehensively assessed, making it challenging to choose suitable methods without practical guidelines. RESULTS: We systematically evaluated 49 simulation methods developed for scRNA-seq and/or SRT data in terms of accuracy, functionality, scalability, and usability using 152 reference datasets derived from 24 platforms. SRTsim, scDesign3, ZINB-WaVE, and scDesign2 have the best accuracy performance across various platforms. Unexpectedly, some methods tailored to scRNA-seq data have potential compatibility for simulating SRT data. Lun, SPARSim, and scDesign3-tree outperform other methods under corresponding simulation scenarios. Phenopath, Lun, Simple, and MFA yield high scalability scores but they cannot generate realistic simulated data. Users should consider the trade-offs between method accuracy and scalability (or functionality) when making decisions. Additionally, execution errors are mainly caused by failed parameter estimations and appearance of missing or infinite values in calculations. We provide practical guidelines for method selection, a standard pipeline Simpipe ( https://github.com/duohongrui/simpipe ; https://doi.org/10.5281/zenodo.11178409 ), and an online tool Simsite ( https://www.ciblab.net/software/simshiny/ ) for data simulation. CONCLUSIONS: No method performs best on all criteria, thus a good-yet-not-the-best method is recommended if it solves problems effectively and reasonably. Our comprehensive work provides crucial insights for developers on modeling gene expression data and fosters the simulation process for users.


Subject(s)
Gene Expression Profiling , Single-Cell Analysis , Single-Cell Analysis/methods , Gene Expression Profiling/methods , Humans , Software , Computer Simulation , Transcriptome , Computational Biology/methods , Sequence Analysis, RNA/methods , RNA-Seq/methods , RNA-Seq/standards
2.
Comput Struct Biotechnol J ; 20: 3783-3795, 2022.
Article in English | MEDLINE | ID: mdl-35891786

ABSTRACT

In transcriptomics, differentially expressed genes (DEGs) provide fine-grained phenotypic resolution for comparisons between groups and insights into molecular mechanisms underlying the pathogenesis of complex diseases or phenotypes. The robust detection of DEGs from large datasets is well-established. However, owing to various limitations (e.g., the low availability of samples for some diseases or limited research funding), small sample size is frequently used in experiments. Therefore, methods to screen reliable and stable features are urgently needed for analyses with limited sample size. In this study, MSPJ, a new machine learning approach for identifying DEGs was proposed to mitigate the reduced power and improve the stability of DEG identification in small gene expression datasets. This ensemble learning-based method consists of three algorithms: an improved multiple random sampling with meta-analysis, SVM-RFE (support vector machines-recursive feature elimination), and permutation test. MSPJ was compared with ten classical methods by 94 simulated datasets and large-scale benchmarking with 165 real datasets. The results showed that, among these methods MSPJ had the best performance in most small gene expression datasets, especially those with sample size below 30. In summary, the MSPJ method enables effective feature selection for robust DEG identification in small transcriptome datasets and is expected to expand research on the molecular mechanisms underlying complex diseases or phenotypes.

3.
Mitochondrial DNA B Resour ; 5(3): 3784-3785, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33367102

ABSTRACT

The complete mitogenome of Lasioglossum affine (Hymenoptera: Halictidae) was sequenced and analyzed. The whole mitogenome is 17,352 bp (AT%=84.1%) and encodes 37 typical eukaryotic mitochondrial genes, including 13 protein-coding genes (PCGs), 22 tRNAs, two rRNAs, and an AT-rich region. Further analysis found three gene rearrangements, where trn I-Q-M â†’ trn M-I-Q, trn W-C-Y â†’ trn C-W-Y, and trn K-D â†’ trn D-K were shuffled. The phylogenetic relationships of 19 species of Hymenoptera were established using maximum-likelihood method based on 13 concatenated PCGs. The result showed that Lasioglossum affine is a sister of Lasioglossum sp. SJW-2017.

4.
Cells ; 9(3)2020 03 24.
Article in English | MEDLINE | ID: mdl-32213971

ABSTRACT

For accurate gene expression quantification, normalization of gene expression data against reliable reference genes is required. It is known that the expression levels of commonly used reference genes vary considerably under different experimental conditions, and therefore, their use for data normalization is limited. In this study, an unbiased identification of reference genes in Caenorhabditis elegans was performed based on 145 microarray datasets (2296 gene array samples) covering different developmental stages, different tissues, drug treatments, lifestyle, and various stresses. As a result, thirteen housekeeping genes (rps-23, rps-26, rps-27, rps-16, rps-2, rps-4, rps-17, rpl-24.1, rpl-27, rpl-33, rpl-36, rpl-35, and rpl-15) with enhanced stability were comprehensively identified by using six popular normalization algorithms and RankAggreg method. Functional enrichment analysis revealed that these genes were significantly overrepresented in GO terms or KEGG pathways related to ribosomes. Validation analysis using recently published datasets revealed that the expressions of newly identified candidate reference genes were more stable than the commonly used reference genes. Based on the results, we recommended using rpl-33 and rps-26 as the optimal reference genes for microarray and rps-2 and rps-4 for RNA-sequencing data validation. More importantly, the most stable rps-23 should be a promising reference gene for both data types. This study, for the first time, successfully displays a large-scale microarray data driven genome-wide identification of stable reference genes for normalizing gene expression data and provides a potential guideline on the selection of universal internal reference genes in C. elegans, for quantitative gene expression analysis.


Subject(s)
Caenorhabditis elegans/genetics , Genes, Essential , Animals , Databases, Genetic , Gene Expression Regulation , Molecular Sequence Annotation , Reference Standards , Reproducibility of Results
5.
Int J Mol Sci ; 20(16)2019 Aug 19.
Article in English | MEDLINE | ID: mdl-31430856

ABSTRACT

Asthma is a common chronic airway disease worldwide. Due to its clinical and genetic heterogeneity, the cellular and molecular processes in asthma are highly complex and relatively unknown. To discover novel biomarkers and the molecular mechanisms underlying asthma, several studies have been conducted by focusing on gene expression patterns in epithelium through microarray analysis. However, few robust specific biomarkers were identified and some inconsistent results were observed. Therefore, it is imperative to conduct a robust analysis to solve these problems. Herein, an integrated gene expression analysis of ten independent, publicly available microarray data of bronchial epithelial cells from 348 asthmatic patients and 208 healthy controls was performed. As a result, 78 up- and 75 down-regulated genes were identified in bronchial epithelium of asthmatics. Comprehensive functional enrichment and pathway analysis revealed that response to chemical stimulus, extracellular region, pathways in cancer, and arachidonic acid metabolism were the four most significantly enriched terms. In the protein-protein interaction network, three main communities associated with cytoskeleton, response to lipid, and regulation of response to stimulus were established, and the most highly ranked 6 hub genes (up-regulated CD44, KRT6A, CEACAM5, SERPINB2, and down-regulated LTF and MUC5B) were identified and should be considered as new biomarkers. Pathway cross-talk analysis highlights that signaling pathways mediated by IL-4/13 and transcription factor HIF-1α and FOXA1 play crucial roles in the pathogenesis of asthma. Interestingly, three chemicals, polyphenol catechin, antibiotic lomefloxacin, and natural alkaloid boldine, were predicted and may be potential drugs for asthma treatment. Taken together, our findings shed new light on the common molecular pathogenesis mechanisms of asthma and provide theoretical support for further clinical therapeutic studies.


Subject(s)
Asthma/diagnosis , Systems Biology/methods , Asthma/genetics , Asthma/metabolism , Asthma/pathology , Biomarkers/analysis , Biomarkers/metabolism , Gene Expression Regulation , Gene Regulatory Networks , Humans , Protein Interaction Maps , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...