Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Ultrasonics ; 127: 106844, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36095851

ABSTRACT

Compared with planar transducers, focused transducers have higher ultrasound intensity and better lateral resolution in the focal zone. At present, the matching layer materials for focused transducers are mainly 0-3 composite materials, which have problems such as non-uniformity, difficulty to fabricate at high frequencies, and large sound attenuation. In this paper, finite element analysis is carried out to simulate lens-focused transducers with different matching layer structures and materials. It is found that the focused transducer with magnesium alloy matching layer has the best comprehensive performance. A lens-focused PZT-5H ultrasonic transducer was then fabricated with AZ31B magnesium alloy as the first matching layer. The measured results show that the center frequency of the transducer is 4.38 MHz, the -6-dB bandwidth is 68.35 % and the insertion loss is -13.88 dB. Benefiting from the high uniformity, high acoustic impedance and extremely low acoustic attenuation of magnesium alloy, the transducers in this research exhibit superior performances than other reported transducers with conventional matching layer. The current work suggests that AZ31B magnesium alloy is a promising matching layer material for ultrasonic transducers.

2.
Sensors (Basel) ; 20(15)2020 Aug 04.
Article in English | MEDLINE | ID: mdl-32759794

ABSTRACT

As an effective structural health monitoring (SHM) technology, the piezoelectric transducer (PZT) and guided wave-based monitoring methods have attracted growing interest in the space field. When facing the large-scale monitoring requirements of space structures, a lot of PZTs are needed and may cause problems regarding to additional weight of connection cables, placement efficiency and performance consistency. The PZT layer is a promising solution against these problems. However, the current PZT layers still face challenges from large-scale lightweight monitoring and the lack of reliability assessment under extreme space service conditions. In this paper, a large-scale PZT network layer (LPNL) design method is proposed to overcome these challenges, by adopting a large-scale lightweight PZT network design method and network splitting-recombination based integration strategy. The developed LPNL offers the advantages of being large size, lightweight, ultra-thin, flexible, customized in shape and highly reliable. A series of extreme environmental tests are performed to verify the reliability of the developed LPNL under space service environment, including extreme temperature conditions, vibration at different flying phases, landing impact, and flying overload. Results show that the developed LPNL can withstand these harsh environmental conditions and presents high reliability and functionality.

3.
Sensors (Basel) ; 19(18)2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31505871

ABSTRACT

The authors wish to make the following corrections to this paper [1]: [...].

4.
Sensors (Basel) ; 18(12)2018 Dec 14.
Article in English | MEDLINE | ID: mdl-30558141

ABSTRACT

In this paper, we report the use of magnesium alloy (AZ31B) as the matching material for PZT-5H ultrasonic transducers. The AZ31B has an acoustic impedance of 10.3 MRayl, which provides a good acoustic impedance match for PZT-5H ultrasonic transducers in water medium based on the double matching layer theory. Two PZT-5H transducers with different center frequencies were designed and fabricated using the AZ31B. The respective center frequencies of the two fabricated transducers were 4.6 MHz and 9.25 MHz. The 4.6 MHz transducer exhibits a -6 dB bandwidth of 79% and two-way insertion loss of -11.11 dB. The 9.25 MHz transducer also shows good performance: -6 dB bandwidth of 71% and two-way insertion loss of -14.43 dB. The properties of the two transducers are superior to those of transducers using a composite matching layer, indicating that the magnesium alloy may be a promising alternative for high-performance transducers.

SELECTION OF CITATIONS
SEARCH DETAIL
...