Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 106
Filter
1.
J Hepatol ; 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38679071

ABSTRACT

BACKGROUND & AIMS: Intrahepatic cholangiocarcinoma (iCCA) is a fatal malignancy of the biliary system. The lack of a detailed understanding of oncogenic signaling or global gene expression alterations has impeded clinical iCCA diagnosis and therapy. The role of protein lactylation, a newly unraveled post-translational modification that orchestrates gene expression, remains largely elusive in the pathogenesis of iCCA. METHODS: Proteomics analysis of clinical iCCA specimens and adjacent tissues was performed to screen for proteins aberrantly lactylated in iCCA. Mass spectrometry, macromolecule interaction and cell behavioral studies were employed to identify the specific lactylation sites on the candidate protein(s) and to decipher the downstream mechanisms responsible for iCCA development, which were subsequently validated using a xenograft tumor model and clinical samples. RESULTS: Nucleolin (NCL), the most abundant RNA-binding protein in the nucleolus, was identified as a functional lactylation target that correlates with iCCA occurrence and progression. NCL was lactylated predominantly at lysine 477 by the acyltransferase P300 in response to a hyperactivity of glycolysis, and promoted the proliferation and invasion of iCCA cells. Mechanistically, lactylated NCL bound to the primary transcript of MAP kinase-activating death domain protein (MADD) and warranted an efficient translation of MADD by circumventing alternative splicing that generates a premature termination codon. NCL lactylation, MADD and subsequent ERK activation promoted xenograft tumor growth, and were found to associate with the overall survival of iCCA patients. CONCLUSION: NCL is lactylated to upregulate MADD through an RNA splicing-dependent mechanism, which potentiates iCCA pathogenesis via the MAPK pathway. Our findings reveal a novel link between metabolic reprogramming and canonical tumor-initiating events, and provide biomarkers that can be potentially used for prognostic evaluation or targeted treatment of iCCA. IMPACT AND IMPLICATION: Intrahepatic cholangiocarcinoma (iCCA) is a highly aggressive liver malignancy with largely uncharacterized pathogenetic mechanisms. Herein, we demonstrated that glycolysis promotes P300-catalyzed lactylation of NCL, which upregulates MAP kinase-activating death domain protein (MADD) through precise mRNA splicing, and activates ERK signaling to drive iCCA development. These findings unravel a novel link between metabolic rewiring and canonical oncogenic pathways, and provide new biomarkers for prognostic assessment and targeting of clinical iCCA.

2.
Transplant Rev (Orlando) ; 38(2): 100841, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38518424

ABSTRACT

Rat orthotopic liver transplantation (ROLT) serves as an ideal animal model and has gained popularity in addressing complications and perioperative treatments related to clinical liver transplantation. Through extensive research on ROLT model construction, the conventional "two-cuff" method has gradually become established. However, traditional methods still present challenges including limited visual field during vascular suturing, vascular torsion, biliary tract injuries, and prolonged anhepatic periods. Consequently, this paper aims to review the latest advancements and various techniques in this field, providing a valuable reference for individuals interested in constructing ROLT models.


Subject(s)
Liver Transplantation , Humans , Rats , Animals , Liver Transplantation/methods , Models, Animal , Anastomosis, Surgical
3.
Cancer Lett ; 577: 216439, 2023 11 28.
Article in English | MEDLINE | ID: mdl-37832781

ABSTRACT

Hippo pathway plays a crucial role in the progression of hepatocellular carcinoma (HCC), and yes-associated protein (YAP) is one of the major factors of the Hippo pathway. However, the mechanism of abnormal YAP activation in HCC has not been well elucidated. Here, we screened a Deubiquitinating enzymes' (DUB) siRNA library targeting DUBs, and identified Ubiquitin Specific Peptidase 19 (USP19) as a specific deubiquitinating enzyme of YAP in HCC, which could stabilize YAP at K76 and K90 sites via removing the K48- and K11-linked ubiquitin chains. USP19 knockdown decreased the expression of YAP protein and its target gene (CTGF, CYR61, ANKRD1) expression. Through substantial in vivo and in vitro experiments, we prove that USP19 facilities the proliferation and migration of HCC. More importantly, we found that USP19 was upregulated in HCC tissues and associated with poor prognosis. In general, our research revealed a novel post-translational mechanism between USP19 and YAP in HCC, suggesting that USP19 may be a pivotal therapeutic target for HCC treatment.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Protein Processing, Post-Translational , Ubiquitin/metabolism , Deubiquitinating Enzymes/genetics , Cell Line, Tumor , Endopeptidases/metabolism
4.
MedComm (2020) ; 4(5): e346, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37614965

ABSTRACT

Cellular senescence plays a pivotal role in wound healing. At the initiation of liver fibrosis regression, accumulated senescent cells were detected and genes of senescence were upregulated. Flow cytometry combined with single-cell RNA sequencing analyses revealed that most of senescent cells were liver nonparenchymal cells. Removing senescent cells by dasatinib and quercetin (DQ), alleviated hepatic cellular senescence, impeded fibrosis regression, and disrupted liver sinusoids. Clearance of senescent cells not only decreased senescent macrophages but also shrank the proportion of anti-inflammatory M2 macrophages through apoptotic pathway. Subsequently, macrophages were depleted by clodronate, which diminished hepatic senescent cells and impaired fibrosis regression. Mechanistically, the change of the epigenetic regulator enhancer of zeste homolog2 (EZH2) accompanied with the emergence of hepatic senescent cells while liver fibrosis regressed. Blocking EZH2 signaling by EPZ6438 reduced hepatic senescent cells and macrophages, decelerating liver fibrosis regression. Moreover, the promoter region of EZH2 was transcriptionally suppressed by Notch-Hes1 (hairy and enhancer of split 1) signaling. Disruption of Notch in macrophages using Lyz2 (lysozyme 2) Cre-RBP-J (recombination signal binding protein Jκ) f/f transgenic mice, enhanced hepatic cellular senescence, and facilitated fibrosis regression by upregulating EZH2 and blocking EZH2 abrogated the above effects caused by Notch deficiency. Ultimately, adopting Notch inhibitor Ly3039478 or exosome-mediated RBP-J decoy oligodeoxynucleotides accelerated liver fibrosis regression by augmenting hepatic cellular senescence.

5.
Theranostics ; 13(10): 3371-3386, 2023.
Article in English | MEDLINE | ID: mdl-37351175

ABSTRACT

Objective: The low clinical utility of immune checkpoint inhibitors (ICIs) against PD-1 or PD-L1 has recently been associated with the activation of the Wnt/ß-catenin signaling pathway in hepatocellular carcinoma (HCC), which promotes tumor immune escape and resistance to anti-PD-1/PD-L1 therapy. Hence, we aimed to fabricate a supramolecular peptide which could target the Wnt/ß-catenin signaling pathway coupled with ICIs blockage therapy for optimizing HCC immunotherapy. Methods: A racemic spherical supramolecular peptide termed sBBI&PDP nanoparticle was constructed by hierarchical self-assembly, comprising an L-enantiomeric peptide as an inhibitor of BCL9 and ß-catenin (sBBI) and a D-enantiomeric peptide as an inhibitor of PD-1/PD-L1 (PDP). Results: sBBI&PDP nanoparticle potently suppressed the hyperactivated Wnt/ß-catenin signaling pathway in vitro and in vivo, while blocking endogenous PD-L1 effectively. Furthermore, sBBI&PDP increased the infiltration and action of CD8+ T cells at tumor sites. Notably, compared with the original sBBI and commercial Anti-PD-L1 inhibitors, the designed sBBI&PDP showed stronger antitumor efficacy in an orthotopic homograft mice model of HCC and a PDX HCC model in Hu-PBMC-NSG mice. Moreover, sBBI&PDP possessed a favorable biosafety profile. Conclusion: The successful implementation of this strategy could revitalize ICIs blockage therapy and promote the discovery of artificial peptides for HCC immunotherapy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Mice , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , CD8-Positive T-Lymphocytes , beta Catenin/metabolism , Leukocytes, Mononuclear/metabolism , Immunotherapy , Peptides/metabolism , B7-H1 Antigen/metabolism , Cell Line, Tumor
6.
Shock ; 60(1): 75-83, 2023 07 01.
Article in English | MEDLINE | ID: mdl-37141162

ABSTRACT

ABSTRACT: Objective: Histone deacetylase inhibitors (HDACIs) have been reported to improve survival in rats with hemorrhagic shock (HS). However, no consensus exists on the most effective HDACIs and their administration routes. We herein aimed to determine the optimal HDACIs and administration route in rats with HS. Methods: Survival analysis: In experiment I, male Sprague-Dawley rats were subjected to HS (mean arterial pressure [MAP] was maintained at 30-40 mm Hg for 20 min), and intravenously injected with the following agents (n = 8 per group): (1) no treatment, (2) vehicle (VEH), (3) entinostat (MS-275), (4) [ N -((6-(Hydroxyamino)-6-oxohexyl)oxy)-3,5-dimethylbenzamide] (LMK-235), (5) tubastatin A, (6) trichostatin A (TSA), and (7) sirtinol. In experiment II, rats were intraperitoneally injected with TSA. Mechanism research: In experiments I and II, rats were observed for 3 h, after which blood samples and liver, heart, and lung tissues were harvested. Results: In experiment I, 75% rats in the VEH group but only 25% rats in the LMK-235 and sirtinol groups died within ≤5 h of treatment, whereas the survival of rats in the MS-275, tubastatin A, and TSA groups was significantly prolonged. MS-275, LMK-235, tubastatin A, and TSA significantly reduced histopathological scores, apoptosis cell numbers, and inflammatory cytokine levels. In experiment II, the survival was longer after i.v. TSA treatment than after i.p. TSA treatment, and the IL-6 levels in the heart were significantly lower in rat who received i.p. TSA treatment than in those who received i.v. TSA treatment. Conclusions: The i.v. effect was superior to the i.p. effect, while nonselective and isoform-specific classes I and IIb HDACIs had similar effects.


Subject(s)
Histone Deacetylase Inhibitors , Shock, Hemorrhagic , Animals , Rats , Male , Histone Deacetylase Inhibitors/therapeutic use , Shock, Hemorrhagic/drug therapy , Rats, Sprague-Dawley
7.
Int J Biol Sci ; 19(6): 1941-1954, 2023.
Article in English | MEDLINE | ID: mdl-37063432

ABSTRACT

Rationale: Macrophages play a central role in the development and progression of nonalcoholic fatty liver disease (NAFLD). Studies have shown that Notch signaling mediated by transcription factor recombination signal binding protein for immunoglobulin kappa J region (RBP-J), is implicated in macrophage activation and plasticity. Naturally, we asked whether Notch signaling in macrophages plays a role in NAFLD, whether regulating Notch signaling in macrophages could serve as a therapeutic strategy to treat NAFLD. Methods: Immunofluorescence staining was used to detect the changes of macrophage Notch signaling in the livers of human patients with NAFLD and choline deficient amino acid-defined (CDAA) diet-fed mice. Lyz2-Cre RBP-Jflox or wild-type C57BL/6 male mice were fed with CDAA or high fat diet (HFD) to induce experimental steatohepatitis or steatosis, respectively. Liver histology examinations were performed using hematoxylin-eosin (H&E), Oil Red O staining, Sirius red staining and immunohistochemistry staining for F4/80, Col1α1 and αSMA. The expression of inflammatory factors, fibrosis or lipid metabolism associated genes were evaluated by quantitative reverse transcription (qRT)-PCR, Western blot or enzyme-linked immunosorbent assay (ELISA). The mRNA expression of liver samples was profiled by using RNA-seq. A hairpin-type decoy oligodeoxynucleotides (ODNs) for transcription factor RBP-J was loaded into bEnd.3-derived exosomes by electroporating. Mice with experimental NAFLD were treated with exosomes loading RBP-J decoy ODNs via tail vein injection. In vivo distribution of exosomes was analyzed by fluorescence labeling and imaging. Results: The results showed that Notch signaling was activated in hepatic macrophages in human with NAFLD or in CDAA-fed mice. Myeloid-specific RBP-J deficiency decreased the expression of inflammatory factors interleukin-1 beta (IL1ß) and tumor necrosis factor alpha (TNFα), attenuated experimental steatohepatitis in mice. Furthermore, we found that Notch blockade attenuated lipid accumulation in hepatocytes by inhibiting the expression of IL1ß and TNFα in macrophages in vitro. Meanwhile, we observed that tail vein-injected exosomes were mainly taken up by hepatic macrophages in mice with steatohepatitis. RBP-J decoy ODNs delivered by exosomes could efficiently inhibit Notch signaling in hepatic macrophages in vivo and ameliorate steatohepatitis or steatosis in CDAA or HFD mice, respectively. Conclusions: Combined, macrophage RBP-J promotes the progression of NAFLD at least partially through regulating the expression of pro-inflammatory cytokines IL1ß and TNFα. Infusion of exosomes loaded with RBP-J decoy ODNs might be a promising therapy to treat NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Male , Mice , Animals , Non-alcoholic Fatty Liver Disease/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL , Liver/metabolism , Diet, High-Fat/adverse effects , Transcription Factors/metabolism
8.
Front Endocrinol (Lausanne) ; 14: 1125829, 2023.
Article in English | MEDLINE | ID: mdl-36923221

ABSTRACT

Background: Chronic kidney disease (CKD) and non-alcoholic fatty liver disease (NAFLD) are closely related to immune and inflammatory pathways. This study aimed to explore the diagnostic markers for CKD patients with NAFLD. Methods: CKD and NAFLD microarray data sets were screened from the GEO database and analyzed the differentially expressed genes (DEGs) in GSE10495 of CKD date set. Weighted Gene Co-Expression Network Analysis (WGCNA) method was used to construct gene coexpression networks and identify functional modules of NAFLD in GSE89632 date set. Then obtaining NAFLD-related share genes by intersecting DEGs of CKD and modular genes of NAFLD. Then functional enrichment analysis of NAFLD-related share genes was performed. The NAFLD-related hub genes come from intersection of cytoscape software and machine learning. ROC curves were used to examine the diagnostic value of NAFLD related hub genes in the CKD data sets and GSE89632 date set of NAFLD. CIBERSORTx was also used to explore the immune landscape in GSE104954, and the correlation between immune infiltration and hub genes expression was investigated. Results: A total of 45 NAFLD-related share genes were obtained, and 4 were NAFLD-related hub genes. Enrichment analysis showed that the NAFLD-related share genes were significantly enriched in immune-related pathways, programmed cell death, and inflammatory response. ROC curve confirmed 4 NAFLD-related hub genes in CKD training set GSE104954 and other validation sets. Then they were used as diagnostic markers for CKD. Interestingly, these 4 diagnostic markers of CKD also showed good diagnostic value in the NAFLD date set GSE89632, so these genes may be important targets of NAFLD in the development of CKD. The expression levels of the 4 diagnostic markers for CKD were significantly correlated with the infiltration of immune cells. Conclusion: 4 NAFLD-related genes (DUSP1, NR4A1, FOSB, ZFP36) were identified as diagnostic markers in CKD patients with NAFLD. Our study may provide diagnostic markers and therapeutic targets for CKD patients with NAFLD.


Subject(s)
Non-alcoholic Fatty Liver Disease , Humans , Non-alcoholic Fatty Liver Disease/complications , Non-alcoholic Fatty Liver Disease/diagnosis , Non-alcoholic Fatty Liver Disease/genetics , Biomarkers , Machine Learning , Apoptosis , Computational Biology
10.
Surg Open Sci ; 12: 35-42, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36936452

ABSTRACT

Introduction: The effects of isoform-specific histone deacetylase inhibitors (HDACIs) and the non-selective HDACI on sepsis have been profoundly reported. However, the best HDAC classes have not been fully evaluated. Therefore, this study aimed to determine which HDACIs are responsible for survival and beneficial for organ injury. Methods: Experiment I, SD rats were subjected to cecal ligation and puncture and randomly assigned to the no treatment, dimethyl sulfoxide (DMSO) only, MS-275, LMK-235, tubastatinA (TubA), trichostatin-A (TSA), and sirtinol groups (n = 5). Survival was monitored for 48 h. Experiment II, the animals were monitored for 12 h, then, blood and tissues sample were collected. Interleukin (IL)-6, IL-1ß, tumour necrosis factor (TNF)-α, alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatine kinase (CK) and lactate dehydrogenase (LDH) expressions were evaluated using ELISA. Liver, heart and lung tissues were analysed via hematoxylin and eosin staining. Liver and heart tissue lysates were analysed for acetylated histones H3, H4, a-tubulin and nuclear factor kappa B (NF-κB), IL-6, IL-1ß, and TNF-α using western blotting. Splenocytes were examined via flow cytometry to analyse the immune cell population. Results: MS-275, TubA and TSA treatments significantly prolonged survival. MS-275, LMK-235, TubA and TSA significantly reduced the histopathological scores and AST, ALT, CK, LDH, IL-6, IL-1ß and TNF-α levels, significantly increased acetylated of NF-κB and changed the immune cell proportion. Conclusion: Our results indicated that HDACI classes I and IIb and non-selective HDACI can significantly prolong survival. Moreover, non-selective and isoform-specific class I and IIa/IIb HDACIs can attenuate inflammation and organ injury.

11.
Dig Liver Dis ; 55(7): 955-966, 2023 07.
Article in English | MEDLINE | ID: mdl-36572570

ABSTRACT

The asparaginase-like protein 1 (ASRGL1) catalyzes the hydrolysis of L-asparagine to L-aspartic acid and ammonia. Emerging evidences have shown a strong correlation between ASRGL1 expression and tumorigenesis. However, the expression and biological function of ASRGL1 in hepatocellular carcinoma (HCC) are still unclear. Here, we explored anti-tumor activity and fundamental mechanisms of ASRGL1 blockade in the HCC progression. Expression levels of ASRGL1 in patients with HCC were higher than those in the adjacent normal tissue. In addition, increased expression of ASRGL1 in HCC patients was correlated with poor overall survival. Knockdown of ASRGL1 gene in HepG2 and Li-7 cell lines inhibited cell proliferation, migration and invasion, but promoted apoptosis in vitro. ASRGL1 knockdown suppressed tumor growth in vivo. Conversely, ASRGL1 overexpression promoted cell proliferation, migration and invasion in HepG2 cells. Through bioinformatics analysis, we found that ASRGL1 might participate in the regulation of the cell cycle. Flow cytometry analysis conformed that ASRGL1 knockdown captured the cell cycle during the G2/M phase. ASRGL1 blockade promoted P53 protein expression and reduced expression of cyclin B and CDK1 proteins, as well as failed to binding. Moreover, CDK1 overexpression was able to reverse the decreased proliferation, migration and invasion of HepG2 cells induced by ASRGL1 knockdown. Collectively, our studies indicate that ASRGL1 blockade functions to inhibit cyclin B/CDK1-dependent cell cycle, leading to G2-to-M phase transition failure and tumor suppression in HCC.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/pathology , Down-Regulation , Liver Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation/genetics , Hep G2 Cells , Apoptosis , Carcinogenesis/genetics , Gene Expression Regulation, Neoplastic , Cell Movement , CDC2 Protein Kinase/genetics , CDC2 Protein Kinase/metabolism
12.
Cancer Med ; 12(3): 3068-3078, 2023 02.
Article in English | MEDLINE | ID: mdl-36082777

ABSTRACT

BACKGROUND: The positive prediction of prognosis and immunotherapy within tertiary lymphoid structure (TLS) in cancerous tissue has been well demonstrated, including liver cancer. However, the relationship between TLS and prognosis in the peritumoral region of hepatocellular carcinoma (HCC) has received less attention. Few studies on whether TLS, as a typical representative of acquired immune cell groups, is associated with innate immune cells. The aim of this paper was to identify the prognostic role of peritumor TLS in HCC and to simply explore the relationship with neutrophils infiltration. METHODS: This study included cancerous and paracancerous tissue from 170 patients after surgical resection of HCC. TLS was examined and identified by pathological H&E examination, and the impact on prognosis was further classified by determination of total TLS area. Immunohistochemical staining of CD15+ neutrophils was also performed on half of the cases. The obtained results were validated by external public database, as TLS has been widely shown to be tagged with 12 chemokines. RESULTS: In peritumoral tissue, the TLS- group had better overall survival (OS) and disease-free survival (DFS) outcomes compared with the TLS+ group. On the contrary, the intratumor TLS+ group showed better DFS outcomes. When further investigating the relationship between TLS area distribution and DFS, progressively worse prognosis was only found in the peritumor region with increasing TLS density (TLS- vs. TLSL vs. TLSH ). In addition, neutrophil infiltration increased in parallel with TLS density in the peritumoral region, which was not observed in the intratumoral region. CONCLUSIONS: TLS might have a dual prognostic role in different regions of HCC. The abundance of peritumoral TLS is an independent influence of DFS. The inconsistent correlation between neutrophils and corresponding TLS in different regions may indicate different pathways of immune aggregation and may serve as an explanation for the different prognosis of TLS, which needs to be specifically explored.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Tertiary Lymphoid Structures , Humans , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , Neutrophils/metabolism , Tertiary Lymphoid Structures/pathology , Prognosis , Tumor Microenvironment
13.
Front Oncol ; 13: 1174999, 2023.
Article in English | MEDLINE | ID: mdl-38162488

ABSTRACT

Objective: To assess the efficacy and safety of camrelizumab plus different targeted drugs in adjuvant therapy after hepatocellular carcinoma (HCC) surgery. Patients and methods: This retrospective cohort study included HCC patients who, after undergoing failed postoperative adjuvant lenvatinib therapy, received intravenous camrelizumab 200 mg every 3 weeks (C group, n = 97), camrelizumab plus oral apatinib 250 mg daily (C+A group, n = 125), camrelizumab plus oral lenvatinib 12 mg daily (for bodyweight ≥60 kg)/lenvatinib 8 mg daily (for bodyweight <60 kg) (C+L group, n = 120), or camrelizumab plus oral sorafenib 400 mg bi-daily (C+S group, n = 114) between October 2020 and October 2021. The outcomes including the objective response rate (ORR) and disease control rate (DCR) were evaluated by RECIST 1.1 and iRECIST. The median progression-free survival (mPFS), median overall survival (mOS), 6-month OS rate, 12-month OS rate, and adverse events were evaluated. Results: As of 31 May 2022 with last follow-up time, the ORR was 17.2% for the C group, 44.6% for the C+A group, 47.9% for the C+L group, and 36.3% for the C+S group. The DCR was 72.0% for the C group, 81.8% for the C+A group, 85.5% for the C+L group, and 77.9% for the C+S group. The mPFS was 11.0 months (10.1-12.8) for the C group, 14.0 months (12.7-16.5) for the C+A group, 18.0 months (16.9-20.1) for the C+L group, and 12.0 months (9.7-14.4) for the C+S group. The mOS was 13.0 months (11.6-15.3) for the C group, 17.0 months (15.8-19.4) for the C+A group, 19.0 months (17.7-20.2) for the C+L group, and 15.0 months (14.1-17.3) for the C+S group. Grade 3 or 4 treatment-related adverse events occurred in 14 patients (14.4%) for the C group, 10 patients (8.0%) for the C+A group, 5 patients (4.2%) for the C+L group, and 11 patients (9.6%) for the C+S group. The most common adverse events were fatigue and transaminitis. Conclusion: Camrelizumab combined with lenvatinib as adjuvant therapy showed promising efficacy and manageable safety in HCC patients. It might be a potential adjuvant therapy or second-line treatment for these patients.

14.
Biomolecules ; 12(12)2022 12 01.
Article in English | MEDLINE | ID: mdl-36551229

ABSTRACT

Interleukin-18 (IL-18) can effectively activate natural killer (NK) cells and induce large concentrations of interferon-γ (IFN-γ). In healthy humans, IL-18 binding protein (IL-18BP) can inhibit the binding of IL-18 to IL-18R and counteract the biological action of IL-18 due to its high concentration and high affinity, thus preventing the production of IFN-γ and inhibiting NK-cell activation. Through previous studies and the phenomena observed by our group in pig-non-human primates (NHPs) liver transplantation experiments, we proposed that the imbalance in IL-18/IL-18BP expression upon transplantation encourages the activation, proliferation, and cytotoxic effects of NK cells, ultimately causing acute vascular rejection of the graft. In this research, we used Lewis-Brown Norway rat orthotopic liver transplantation (OLTx) as a model of acute vascular rejection. AAV8-Il18bp viral vectors as gene delivery vehicles were constructed for gene therapy to overexpress IL-18BP and alleviate NK-cell rejection of the graft after transplantation. The results showed that livers overexpressing IL-18BP had reduced damage and could function longer after transplantation, effectively improving the survival time of the recipients.


Subject(s)
Blood Vessels , Genetic Therapy , Graft Rejection , Graft Survival , Interleukin-18 , Liver Transplantation , Animals , Rats , Graft Rejection/prevention & control , Interferon-gamma/genetics , Interferon-gamma/metabolism , Interleukin-18/genetics , Interleukin-18/metabolism , Liver Transplantation/methods , Rats, Inbred Lew , Graft Survival/genetics , Blood Vessels/immunology , Genetic Vectors
15.
FASEB J ; 36(11): e22586, 2022 11.
Article in English | MEDLINE | ID: mdl-36190431

ABSTRACT

The prognostic value of immune cells in tertiary lymphoid structures (TLSs) remains unclear in hepatocellular carcinoma (HCC). Here, 59 of 145 patients had TLSs in training set, 48 of 120 patients had TLSs in testing set. Immunohistochemistry (IHC) were used to label CD3+ T cells, CD20+ B cells, CD8+ T cells, CD208+ dendritic cells, and CD21+ follicular dendritic cells in TLSs. High CD20+, CD208+, and CD8+ cell densities were favorable prognostic factors for overall survival (OS). High CD3+, CD20+, CD208+, and CD8+ cell densities were significantly associated with reduced early recurrence. TLSs were divided into three grades (A, B, and C) based on immune cell density. Patients with grade C or B had significantly improved OS. Patients with grade C had the lowest recurrence rate, followed by those with grade B, while patients with grade A had the highest recurrence rate. The stromal, immune, and ESTIMATE scores derived from the ESTIMATE package were significantly higher and tumor purity was significantly lower in patients with TLSs. Patients with TLSs had significantly higher relative numbers of memory B cells, plasma cells, CD8+ T cells, NK cells, and dendritic cells and lower relative numbers of Treg cells, macrophages, and M2 macrophages according to the CIBERSORT assessment. Bioinformatics analysis and experiments confirmed that KLRK1 and GZMA expression are associated TLSs formation and can predict TLSs existence. Grade B and grade C were favorable prognostic factors for OS and recurrence and could represent immune-active tumors.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Tertiary Lymphoid Structures , CD8-Positive T-Lymphocytes/metabolism , Carcinoma, Hepatocellular/metabolism , Humans , Immunohistochemistry , Liver Neoplasms/metabolism , Lymphocytes, Tumor-Infiltrating
16.
Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi ; 38(9): 769-775, 2022 Sep.
Article in Chinese | MEDLINE | ID: mdl-36082705

ABSTRACT

Objective To establish a prognosis model using immune-related genes in hepatocellular carcinoma (HCC) patients, which could provide a theoretical foundation for HCC immunotherapy. Methods Immune-related genes were identified by differential expression analysis, and risk prognosis prediction models were established using univariate, multivariate Cox and Least absolute shrinkage and selection operator (LASSO) regression analysis. The predictive value of the prognostic model was evaluated using the concordance index (C-index), receiver operating characteristic curve (ROC curve), and calibration curve and decision curve. In addition, risk score was used to stratify patients to assess prognostic differences in patients at different risk levels. Results We identified 1403 immune-related genes, mainly involved in biological processes such as immune response, adaptive immune response, and immunoglobulin production, as well as pathways such as cytokine interactions, chemokine signaling pathways and allograft rejection. Univariate Cox analysis found that 53 immune-related genes were associated with prognosis, and eight prognostic immune-related genes cytochrome P450 1A2(CYP1A2), ficolin 3(FCN3), hepatoma derived growth factor-like 1(HDGFL1), lipocalin 2(LCN2), mitochondrially encoded cytochrome C oxidase II pseudogene 12(MTCO2P12), peptidyl arginine deiminase 3(PADI3) and regulator of G protein signaling 16(RGS16) were further screened by LASSO and multivariate Cox regression analysis. Subsequently, a prognostic nomogram based on risk score was established. The ROC curve, calibration curve and decision curve confirmed that the model has good discrimination, accuracy and clinical value. Furthermore, stratified analysis showed that patients with higher risk scores had poorer prognosis. Conclusion We establish a prognostic nomogram model using eight immune-related genes, which can reliably predict the prognosis of HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/pathology , Computational Biology/methods , Humans , Liver Neoplasms/pathology , Nomograms , Prognosis
17.
Front Oncol ; 12: 907399, 2022.
Article in English | MEDLINE | ID: mdl-35936671

ABSTRACT

N6-methyladenosine (m6A) is an epigenetic modification that widely exists in long noncoding RNAs (lncRNAs) and is involved in the regulation of oncogenes or tumor suppressor genes that form complex enzymes to affect the occurrence of tumors. The abnormal modification of m6A methylation can alter the overall m6A level and thus contribute to the malignant biological behaviors of hepatocellular carcinoma (HCC). LncRNAs related to m6A methylation are involved in lipogenesis, the proliferation, migration and invasion of HCC cells, the stemness of tumor cells and sorafenib resistance. In this review, we systematically elaborated the occurrence mechanism of lncRNA and m6A methylation modification in HCC and the effect of m6A methylation modification of lncRNA on the occurrence of HCC, suggesting that the combination of m6A methylation modification and lncRNA will be more meaningful as molecular markers or prognostic markers. It is helpful to provide further ideas for exploring the pathogenesis of HCC and identifying new targets for HCC treatment and diagnosis and achieve precise individual treatment of liver cancer.

18.
Liver Cancer ; 11(4): 315-328, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35978596

ABSTRACT

Portal vein tumor thrombus (PVTT) is very common and it plays a major role in the prognosis and clinical staging of hepatocellular carcinoma (HCC). We have published the first version of the guideline in 2016 and revised in 2018. Over the past several years, many new evidences for the treatment of PVTT become available, especially for the advent of new targeted drugs and immune checkpoint inhibitors which have further improved the prognosis of PVTT. So, the Chinese Association of Liver Cancer and Chinese Medical Doctor Association revised the 2018 version of the guideline to adapt to the development of PVTT treatment. Future treatment strategies for HCC with PVTT in China would depend on new evidences from more future clinical trials.

19.
Liver Cancer ; 11(3): 192-208, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35949289

ABSTRACT

Background: Hepatocellular carcinoma (HCC) is the most common type of liver cancer and causes many cancer-related deaths worldwide; in China, it is the second most prevalent cause of cancer deaths. Most patients are diagnosed clinically with advanced stage disease. Summary: For more than a decade, sorafenib, a small-molecular-weight tyrosine kinase inhibitor (SMW-TKI) was the only molecular targeted drug available with a survival benefit for the treatment of advanced HCC. With the development of novel TKIs and immune checkpoint inhibitors for advanced HCC, the management of patients has been greatly improved. However, though angiogenic-based targeted therapy remains the backbone for the systemic treatment of HCC, to date, no Chinese guidelines for novel molecular targeted therapies to treat advanced HCC have been established. Our interdisciplinary panel on the treatment of advanced HCC comprising hepatologists, hepatobiliary surgeons, oncologists, radiologists, pathologists, orthopedic surgeons, traditional Chinese medicine physicians, and interventional radiologists has reviewed the literature in order to develop updated treatment regimens. Key Messages: Panel consensus statements for the appropriate use of new molecular -targeted drugs including doses, combination therapies, adverse reaction management as well as efficacy evaluation, and predictions for treatment of advanced HCC with evidence levels based on published data are presented, thereby providing an overview of molecular targeted therapies for healthcare professionals.

20.
Front Bioeng Biotechnol ; 10: 901534, 2022.
Article in English | MEDLINE | ID: mdl-35845407

ABSTRACT

Bionic self-assembly hydrogel derived by peptide as an effective biomedical hemostatic agent has always gained great attention. However, developing hydrogels with eminent-biosecurity, rapidly hemostatic and bactericidal function remains a critical challenge. Hence, we designed an injectable hydrogel with hemostatic and bactericidal function based on Bionic Self-Assembling Peptide (BSAP) in this study. BSAP was formed with two functionalized peptides containing (RADA)4 motif and possessed the ability to self-assemble into nanofibers. As expected, BSAP could rapidly co-assemble into hydrogel network structure in situ driven by Ca2+. The hydrogel with a concentration of 5% showed a superior microporous structure and excellent shear thinning characteristics, as well as injectability. Moreover, in the foot trauma model and tail amputation model, the fabricated hydrogel exhibited a lower blood clotting index and dramatically reduced blood clotting time and bleeding volume. Remarkably, the hydrogel reduced inflammatory responses by blocking bacterial infection, promoting wound healing. Finally, the hydrogel is highly hemocompatible and has no cytotoxicity. Overall, this work provides a strategy for developing a high-biosecurity hydrogel with hemostatic and antibacterial properties, which will allow for the clinical application of BSAP.

SELECTION OF CITATIONS
SEARCH DETAIL
...