Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Heliyon ; 10(11): e31696, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38841463

ABSTRACT

Studying the mechanisms by which climate change interacted with human societies during the historical period can provide historical insights and cultural roots for climate policy building in the region. In this study, we constructed Stability-Robustness-Resilience Model (SSR model) and used the TOPSIS method (Technique for Order Preference by Similarity to Ideal Solution) and the entropy weight method to assess the change processes of robustness, resilience, and stability of Ming's society in response to climate threats. We have also compared three extreme droughts that occurred in different periods of social robustness-resilience combinations by using the SRR model. The results are as follows. (1) The stability of the Ming society was high in YongLe - HongZhi period (1402-1505 CE), when both social robustness and resilience were higher than the average level of Ming Dynasty (0.5611 for the former and 0.4215 for the latter), but there was a significant decline in social stability in TianShun period (1457-1464 CE). In ZhengDe - ChongZhen period (1506-1644 CE), the stability of Ming society gradually decreased, and it rebounded shortly in the LongQing-WanLi period (1506-1620 CE). (2) The high stability benefited from higher socio-economic levels, better government finance levels, larger national food reserves, safer social environments (high robustness), and higher levels of ruling class governance and risk response (high resilience); whereas insecure social environment induced by war, declining socio-economic levels and government finance levels were the main reasons for the decline in society's stability. (3)The ChengHua and WanLi droughts both happened at a time with high social robustness, so although their meteorological anomalies were severe, their impact on society was small. While the JiaJing drought happened at a time with low social robustness and resilience, so although the meteorological anomaly was relatively weak, it resulted in a more severe social consequence than the other two events.

2.
Talanta ; 277: 126339, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38823321

ABSTRACT

Bisphenols and benzophenones are two typical kinds of endocrine-disrupting compounds (EDCs) that have been extensively detected in water environments, posing unanticipated risks to aquatic organisms and humans. It is urgent to develop efficient sample pretreatment methods for precise measurement of such EDCs. In this study, a magnetic and multi-shelled metal-organic framework derivative material has been prepared to extract and enrich trace bisphenols and benzophenones from water. Via a solvothermal reaction induced by sodium citrate followed by a carbonization treatment, a ZIF-67@ZIF-8 derived CoZn-magnetic hierarchical carbon (CoZn-MHC) material has been synthesized as a high-performance magnetic solid-phase extraction (MSPE) adsorbent. This adsorbent exhibited a good specific surface area (213.80 m2⋅g-1) and a saturation magnetization of 63.2 emu·g-1. After the optimization of several parameters (including adsorbent dosage, extraction time, pH, ionic strength, desorption solvent, and solvent volume), an efficient MSPE method for several EDCs (comprising bisphenols and benzophenones) was developed with a good linear range (R2 ≥ 0.990), a high sensitivity range (LODs: 0.793-5.37 ng⋅L-1), and good reusability (RSD ≤4.67 % in five consecutive tests). Furthermore, the material exhibited commendable resistance to matrix interference in natural water samples with the recovery rates of target compounds ranging from 74.8 % to 107 %. We envision that the preparation strategy of this functional metal-organic framework (MOF)-based adsorbent for EDCs may provide insights for relevant research in the future.

3.
Environ Res ; 252(Pt 4): 119077, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714222

ABSTRACT

Household products, in response to regulations, increasingly incorporate phthalate (PAE) alternatives instead of traditional PAEs. However, limited information exists regarding the fate and exposure risk of these PAE alternatives and their monoesters in indoor environments. The contamination levels of PAE alternatives and their monoesters in indoor dust might vary across regions due to climate, population density, industrial activities, and interior decoration practices. By analyzing indoor dust samples from six geographical regions across China, this study aims to shed light on concentrations, profiles, and human exposure to 12 PAE alternatives and 9 their monoesters. Bis(2-ethylhexyl) benzene-1,4-dicarboxylate (DEHTP), tributyl 2-acetyloxypropane-1,2,3-tricarboxylate (ATBC), and tris(2-ethylhexyl) benzene-1,2,4-tricarboxylate (TOTM) were the main PAE alternatives in dust across all regions. The total concentrations of 12 PAE alternatives ranged from 0.125 to 4160 µg/g in indoor dust. High molecular weight PAE alternatives had significantly correlated concentrations (p < 0.05) based on Spearman analysis, suggesting their co-use in heat-resistant plastic products. A collective of nine monoesters were identified in most samples, with total concentrations ranging from 0.048 to 29.6 µg/g. The median concentrations of PAE alternatives were highest in North China (66.8 µg/g), while those of monoesters were highest in Southwest China (6.93 µg/g). A significant correlation (p < 0.05) between the concentrations of DEHTP and its monoester suggested that degradation could be a potential source of monoesters. Although hazard quotients (HQs) have been calculated to suggest that the current exposure is unlikely to pose a significant health risk, the lack of toxicity threshold data and the existence of additional exposure pathways necessitate a further confirmation.


Subject(s)
Air Pollution, Indoor , Dust , Phthalic Acids , Dust/analysis , China , Phthalic Acids/analysis , Humans , Air Pollution, Indoor/analysis , Environmental Exposure/analysis , Air Pollutants/analysis , Esters/analysis , Environmental Monitoring
4.
STAR Protoc ; 5(2): 102985, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38691462

ABSTRACT

Ancient genomics has revolutionized our understanding of human evolution and migration history in recent years. Here, we present a protocol to prepare samples for ancient genomics research. We describe steps for releasing DNA from human remains, DNA library construction, hybridization capture, quantification, and sequencing. We then detail procedures for mapping sequence reads and population genetics analysis. This protocol also outlines challenges in extracting ancient DNA samples and authenticating ancient DNA to uncover the genetic history and diversity of ancient populations. For complete details on the use and execution of this protocol, please refer to Tao et al.1.

5.
J Transl Med ; 22(1): 5, 2024 01 02.
Article in English | MEDLINE | ID: mdl-38169393

ABSTRACT

BACKGROUND: Bladder cancer is very common worldwide. PIGT is a subunit of the glycosylphosphatidylinositol transamidase which involves in tumorigenesis and invasiveness. m6A modification of mRNA has been linked to cell proliferation, tumor progression and other biological events. However, how PIGT is regulated and what is the function of PIGT in bladder cancer remains to be elucidated. METHODS: PIGT was silenced or overexpressed to study its role in regulating bladder cancer. Cell proliferation and invasion were examined with the Cell Counting Kit-8, colony formation and Transwell assay, respectively. Cellular oxygen consumption rates or extracellular acidification rates were detected by a XF24 Analyzer. Quantitative RT-PCR and immunoblots were performed to detect mRNA and protein levels. RESULTS: PIGT was overexpressed in bladder cancer. Silencing PIGT inhibited cell proliferation, oxidative phosphorylation, and glycolysis. Overexpressing PIGT promoted cell proliferation, oxidative phosphorylation, glycolysis in vitro and tumor metastasis in vivo by activating glucose transporter 1 (GLUT1). PIGT also promoted GLUT1 glycosylation and membrane trafficking. Wilms' tumor 1-associated protein (WTAP) mediated PIGT m6A modification, and m6A reader, insulin-like growth factor 2 mRNA-binding protein (IGF2BP2), binds to the methylated PIGT to promote the stability of PIGT, leading to up-regulation of PIGT. CONCLUSION: WTAP mediates PIGT m6A modification to increase the stability of PIGT via the IGF2BP2, which enhances cell proliferation, glycolysis, and metastasis in bladder cancer by modulating GLUT1 glycosylation and membrane trafficking.


Subject(s)
Urinary Bladder Neoplasms , Humans , Cell Line, Tumor , Glucose Transporter Type 1/genetics , Glucose Transporter Type 1/metabolism , Glycosylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , Cell Proliferation/genetics , Urinary Bladder Neoplasms/genetics , Urinary Bladder Neoplasms/pathology , Glycolysis/genetics , RNA-Binding Proteins/metabolism
7.
Curr Biol ; 33(22): 4995-5002.e7, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37852263

ABSTRACT

The study of southwest China is vital for understanding the dispersal and development of farming because of the coexistence of millet and rice in this region since the Neolithic period.1,2 However, the process of the Neolithic transition in southwest China is largely unknown, mainly due to the lack of ancient DNA from the Neolithic period. Here, we report genome-wide data from 11 human samples from the Gaoshan and Haimenkou sites with mixed farming of millet and rice dating to between 4,500 and 3,000 years before present in southwest China. The two ancient groups derived approximately 90% of their ancestry from the Neolithic Yellow River farmers, suggesting a demic diffusion of millet farming to southwest China. We inferred their remaining ancestry to be derived from a Hòabìnhian-related hunter-gatherer lineage. We did not detect rice farmer-related ancestry in the two ancient groups, which indicates that they likely adopted rice farming without genetic assimilation. We, however, observed rice farmer-related ancestry in the formation of some present-day Tibeto-Burman populations. Our results suggested the occurrence of both demic and cultural diffusion in the development of Neolithic mixed farming in some parts of southwest China.


Subject(s)
Millets , Rivers , Humans , Millets/genetics , Agriculture , Genome , Farms , DNA, Ancient , Human Migration
8.
Environ Sci Pollut Res Int ; 30(40): 92525-92536, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37491490

ABSTRACT

In this paper, element distribution patterns of red mud particles with different grading temperatures were explored based on TIMA and EDS, and alkali removal performance of different particle sizes under high temperature grading was compared. The results show that non-clay phases in the particles coagulate with the clay phases of different sodium contents during stacking process, thus forming a mixture phase containing clay phase and other impurities. The potential of grading utilization of red mud is displayed by process mineralogy studies. The elements and phases of different particle sizes of red mud cannot be effectively separated by grading at room temperature. Due to high-temperature grading, red mud is divided into three particle sizes, namely, a (above 100 µm), b (38-100 µm), and c (below 38 µm), with Na2O contents of 3.25%, 2.31%, and 8.13%, respectively, decreasing to 1.00%, 0.27%, and 2.99% after alkali removal. The different elements and phases of red mud can be effectively separated by high-temperature grading, which promotes the classification of different particle sizes and the comprehensive utilization of red mud.


Subject(s)
Hot Temperature , Temperature , Clay
9.
Synth Syst Biotechnol ; 8(3): 341-348, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37275577

ABSTRACT

Microbial bioelectrochemical system (BES) is a promising sustainable technology for the electrical energy recovery and the treatment of recalcitrant and toxic pollutants. In microbial BESs, the conversion of harmful pollutants into harmless products can be catalyzed by microorganisms at the anode (Type I BES), chemical catalysts at the cathode (Type II BES) or microorganisms at the cathode (Type III BES). The application of synthetic biology in microbial BES can improve its pollutant removing capability. Synthetic biology techniques can promote EET kinetics, which is helpful for microbial anodic electro-respiration, expediting pollutant removing not only at the anode but also at the cathode. They offer tools to promote biofilm development on the electrode, enabling more microorganisms residing on the electrode for subsequent catalytic reactions, and to overexpress the pollutant removing-related genes directly in microorganisms, contributing to the pollutant decomposition. In this work, based on the summarized aspects mentioned above, we describe the major synthetic biology strategies in designing and improving the pollutant removing capabilities of microbial BES. Lastly, we discuss challenges and perspectives for future studies in the area.

10.
Ann Hum Biol ; 50(1): 161-171, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36809229

ABSTRACT

BACKGROUND: The fine-scale genetic profiles and population history of Manchus and Koreans remain unclear. AIM: To infer a fine-scale genetic structure and admixture of Manchu and Korean populations. SUBJECTS AND METHODS: We collected and genotyped 16 Manchus from Liaoning and 18 Koreans from Jilin province with about 700K genome-wide SNPs. We analysed the data using principal component analysis (PCA), ADMIXTURE, Fst, TreeMix, f-statistics, qpWave, and qpAdm. RESULTS: Manchus and Koreans showed a genetic affinity with northern East Asians. Chinese Koreans showed a long-term genetic continuity with Bronze Age populations from the West Liao River and had a strong affinity with Koreans in South Korea and Japan. Manchus had a different genetic profile compared with other Tungusic populations since the Manchus received additional genetic influence from the southern Chinese but didn't have West Eurasian-related admixture. CONCLUSIONS: The genetic formation of Manchus involving southern Chinese was consistent with the extensive interactions between Manchus and populations from central and southern China. The large-scale genetic continuity between ancient West Liao River farmers and Koreans highlighted the role farming expansion played in the peopling of the Korean Peninsula.


Subject(s)
Asian People , East Asian People , Genetics, Population , Humans , Asian People/genetics , China , East Asian People/genetics , Genotype
11.
J Hepatol ; 78(4): 805-819, 2023 04.
Article in English | MEDLINE | ID: mdl-36669703

ABSTRACT

BACKGROUND & AIMS: Capsaicin receptor, also known as transient receptor potential vanilloid 1 (TRPV1), is involved in pain physiology and neurogenic inflammation. Herein, we discovered the presence of TRPV1 in hepatic stellate cells (HSCs) and aimed to delineate its function in this cell type and liver fibrosis. METHODS: TRPV1 expression was examined in liver biopsies from patients with liver fibrosis using quantitative real-time PCR and immunostaining. Its contribution to liver fibrosis was examined in Trpv1-/- mice, upon lentiviral delivery of the TRPV1 gene, and in human and mouse primary HSCs, using patch clamp, intracellular Ca2+ mobilization determination, FACS analyses and gain/loss of function experiments. Binding of sterile alpha and Toll/interleukin-1 receptor motif-containing protein 1 (SARM1) to TRPV1 was determined using mass spectrometry, co-immunoprecipitation, surface plasmon resonance, bioluminescence resonance energy transfer, and NanoBiT. RESULTS: TRPV1 mRNA levels are significantly downregulated in patients with liver fibrosis and mouse models, showing a negative correlation with F stage and α-smooth muscle actin expression, a marker of HSC activation. TRPV1 expression and function decrease during HSC activation in fibrotic livers in vivo or during culture. Genetic and pharmacological inhibition of TRPV1 in quiescent HSCs leads to NF-κB activation and pro-inflammatory cytokine production. TRPV1 requires binding of its N-terminal ankyrin repeat domain to the TIR-His583 (Toll/interleukin-1 receptor) domain of SARM1 to prevent HSCs from pro-inflammatory activation. Trpv1-/- mice display increased HSC activation and more severe liver fibrosis, whereas TRPV1 overexpression is antifibrotic in various disease models. CONCLUSION: The antifibrotic properties of TRPV1 are attributed to the prevention of HSC activation via the recruitment of SARM1, which could be an attractive therapeutic strategy against liver fibrosis. IMPACT AND IMPLICATIONS: We identified the neuronal channel protein TRPV1 as a gatekeeper of quiescence in hepatic stellate cells, a key driver of liver fibrogenesis and chronic liver disease. Physiologically expressed in healthy liver and consistently downregulated during liver fibrosis development, its therapeutic re-expression is expected to have few side effects, making it an attractive target diagnostic tool and drug candidate for industry and clinicians.


Subject(s)
Hepatic Stellate Cells , TRPV Cation Channels , Humans , Mice , Animals , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , TRPV Cation Channels/pharmacology , Hepatic Stellate Cells/metabolism , Liver/pathology , Liver Cirrhosis/pathology , Gene Expression Regulation , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/pharmacology , Armadillo Domain Proteins/genetics , Armadillo Domain Proteins/metabolism
12.
Sci Rep ; 13(1): 1646, 2023 01 30.
Article in English | MEDLINE | ID: mdl-36717639

ABSTRACT

Support vector machine (SVM) and genetic algorithm were successfully used to predict the changes in the prevalence rate (ΔPR) measured by the increase of reported cases per million population from the 16th to the 45th day during a nation's lockdown after the COVID-19 outbreak. The national cultural indices [individualism-collectivism (Ind), tightness-looseness (Tight)], and the number of people per square kilometer (Pop_density) were used to develop the SVM model of lnΔPR. The SVM model has R2 of 0.804 for the training set (44 samples) and 0.853 for the test set (11 samples), which were much higher than those (0.416 and 0.593) of the multiple linear regression model. The statistical results indicate that there are nonlinear relationships between lnΔPR and Tight, Ind, and Pop_density. It is feasible to build the model for lnΔPR with SVM algorithm. The results suggested that the risk of COVID-19 epidemic spread will be reduced if a nation implements severe measures to strengthen the tightness of national culture and individuals realize the importance of collectivism.


Subject(s)
COVID-19 , Pneumonia , Humans , COVID-19/epidemiology , Communicable Disease Control , SARS-CoV-2 , Algorithms
13.
Biochem Biophys Res Commun ; 630: 167-174, 2022 11 19.
Article in English | MEDLINE | ID: mdl-36155063

ABSTRACT

BACKGROUND AND AIMS: Patients with liver fibrosis who have pain in the liver region may have changed nerve factors. The expression of neurokines and hepatic nerves in liver fibrosis, however, was little understood. In order to better understand how liver fibrosis develops, we plan to look into the hepatic nerve and neurokine changes and how they relate to hepatic stellate cells (HSCs). METHODS: The expression of neurokines in liver samples from 55 chronic hepatitis B patients and the carbon tetrachloride (CCl4) animal model were studied. The co-staining of Nissl and α-SMA allowed us to investigate the neurons and their interaction with α-SMA in fibrotic livers, as well as the expression of the glial cell marker glial fibrillary acidic protein (GFAP) and its relationship with α-SMA, a marker of HSCs. SH-SY5Y cells were treated with a fibrotic serum to imitate the hepatic microenvironment on neuronal cells. We also used brain-derived neurotrophic factor (BDNF) to stimulate mouse primary HSCs and LX2. RESULTS: The levels of mRNA for neurokines such as BDNF, GFAP, and growth-associated protein (GAP43) are significantly increased in both human and animal liver fibrosis. As liver fibrosis advances, we found that Nissl bodies and α-SMA may co-localize, suggesting a connection between hepatic nerves and HSCs. Human fibrotic serum may increase neurkines, notably BDNF, in SH-SY5Y cells. We also found that BDNF increased pro-inflammatory cytokines and fibrogenic markers in hHSCs. CONCLUSIONS: Patients with hepatic fibrosis had significantly higher levels of BDNF, GFAP, GAP43, and nerve fibers. HSC and nerve fibers interact, and nerves also create neurogenic substances that promote liver fibrosis and HSC activation.


Subject(s)
Hepatic Stellate Cells , Neuroblastoma , Animals , Brain-Derived Neurotrophic Factor/metabolism , Carbon Tetrachloride/toxicity , Cytokines/metabolism , Fibrosis , Glial Fibrillary Acidic Protein/metabolism , Hepatic Stellate Cells/metabolism , Humans , Liver/metabolism , Liver Cirrhosis/pathology , Mice , Neuroblastoma/pathology , RNA, Messenger/metabolism , Tumor Microenvironment
15.
Can J Gastroenterol Hepatol ; 2022: 1048104, 2022.
Article in English | MEDLINE | ID: mdl-35855954

ABSTRACT

Objectives: We assessed the potential of glial cell line-derived neurotrophic factor (GDNF) as a useful biomarker to predict cirrhosis in chronic hepatitis B (CHB) patients. Methods: A total of 735 patients from two medical centers (385 CHB patients and 350 healthy controls) were included to determine the association of serum and tissue GDNF levels with biopsy-proven cirrhosis. The diagnostic accuracy of serum GDNF (sGDNF) was estimated and compared with other indices of cirrhosis. Results: We showed significantly higher levels of sGDNF in CHB patients with fibrosis (28.4 pg/ml vs. 11.6 pg/ml in patients without) and patients with cirrhosis (33.8 pg/ml vs. 23.5 pg/ml in patients without). The areas under receiver operating curve (AUROCs) of sGDNF were 0.83 (95% confidence interval (CI): 0.80-0.87) for predicting liver fibrosis and 0.84 (95% CI: 0.79-0.89) for cirrhosis. Findings from the serum protein level and hepatic mRNA expression were consistent. Using the best cutoff to predict cirrhosis, we categorized the patients into sGDNF-high and sGDNF-low groups. The sGDNF-high group had significantly larger Masson's trichrome and reticulin staining-positive area, higher Scheuer score, and METAVIR fibrosis stage (all p < 0.001) but not steatosis. On multivariable regression, sGDNF was independently associated with cirrhosis with an odds ratio of 6.98 (95% CI: 1.10-17.94). Finally, we demonstrated that sGDNF outperformed AST to platelet ratio index, FIB-4, fibroscore, forn index, and fibrometer in differentiating F4 vs. F3. Conclusion: Using serum, tissue mRNA, and biopsy data, our study revealed a significant potential of sGDNF as a novel noninvasive biomarker for cirrhosis in CHB patients.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Hepatitis B, Chronic , Liver Cirrhosis , Aspartate Aminotransferases , Biomarkers/blood , Biopsy , Glial Cell Line-Derived Neurotrophic Factor/blood , Hepatitis B, Chronic/blood , Humans , Liver Cirrhosis/blood , Liver Cirrhosis/virology , Platelet Count , RNA, Messenger , ROC Curve , Retrospective Studies
16.
Talanta ; 248: 123639, 2022 Oct 01.
Article in English | MEDLINE | ID: mdl-35661003

ABSTRACT

Bisphenols, parabens, and their metabolites are a group of chemical compounds with a wide range of polarities but similar chemical structures, which presents a challenge for the simultaneous determination of these compounds in complex biological samples. In this study, a rapid and sensitive method for simultaneous quantification of free bisphenol A (BPA), conjugated BPA, bisphenols, and parabens analogs was developed using solid-phase extraction (SPE) tandem liquid-liquid extraction (LLE). We compared the effects of different types of SPE cartridges, diluents, and LLE solvents on the analyte recovery. Utilizing the direct and indirect determination methods (enzyme hydrolysis), we confirmed the accuracy of the direct method for measuring BPA glucuronide and BPA disulfate. The method enabled the analysis of 24 endocrine-disrupting chemicals (EDCs) in one injection through UHPLC-MSMS measurements, with satisfactory recovery (mean: 91.8-98.6% for urine, 80.2%-96.8% for serum) and precision (RSD <15%). The LOD and LOQ values were 0.003 and 0.01 ng/mL for serum, and 0.002 and 0.006 ng/mL for urine samples, respectively. For real sample analysis, the median concentration of analytes in serum and urine samples ranged from 0.04 ng/mL (BPS) to 56.4 ng/mL (4-HB) and 0.11 ng/mL (BPA) to 136 ng/mL (4-HB), respectively. This method provides a new strategy to simultaneously identify compounds with a wide range of polarities from complicated biological matrices.


Subject(s)
Endocrine Disruptors , Benzhydryl Compounds/analysis , Endocrine Disruptors/analysis , Humans , Parabens/analysis , Solid Phase Extraction/methods , Tandem Mass Spectrometry/methods
17.
Front Genet ; 13: 815285, 2022.
Article in English | MEDLINE | ID: mdl-35251126

ABSTRACT

Guizhou Province harbors extensive ethnolinguistic and cultural diversity with Sino-Tibetan-, Hmong-Mien-, and Tai-Kadai-speaking populations. However, previous genetic analyses mainly focused on the genetic admixture history of the former two linguistic groups. The admixture history of Tai-Kadai-speaking populations in Guizhou needed to be characterized further. Thus, we genotyped genome-wide SNP data from 41 Tai-Kadai-speaking Maonan people and made a comprehensive population genetic analysis to explore their genetic origin and admixture history based on the pattern of the sharing alleles and haplotypes. We found a genetic affinity among geographically different Tai-Kadai-speaking populations, especially for Guizhou Maonan people and reference Maonan from Guangxi. Furthermore, formal tests based on the f 3 /f 4 -statistics further identified an adjacent connection between Maonan and geographically adjacent Hmong-Mien and Sino-Tibetan people, which was consistent with their historically documented shared material culture (Zhang et al., iScience, 2020, 23, 101032). Fitted qpAdm-based two-way admixture models with ancestral sources from northern and southern East Asians demonstrated that Maonan people were an admixed population with primary ancestry related to Guangxi historical people and a minor proportion of ancestry from Northeast Asians, consistent with their linguistically supported southern China origin. Here, we presented the landscape of genetic structure and diversity of Maonan people and a simple demographic model for their evolutionary process. Further whole-genome-sequence-based projects can be presented with more detailed information about the population history and adaptative history of the Guizhou Maonan people.

18.
Alcohol Clin Exp Res ; 46(5): 724-735, 2022 05.
Article in English | MEDLINE | ID: mdl-35338490

ABSTRACT

BACKGROUND: Alcoholic liver disease (ALD) is associated with high morbidity and mortality worldwide. The pathogenesis of ALD is not completely understood. Although accumulating evidence suggests an important role of glial cell line-derived neurotrophic factor (GDNF) in several diseases, there are no data concerning its role in ALD. This study compared patients with ALD with control subjects and used a mouse model and a cell culture model to investigate the function of GDNF in ALD and its mechanism of action in hepatocyte injury. METHODS: Serum levels of GDNF were measured in 25 patients with ALD and 25 healthy control subjects. A 4-week Lieber-DeCarli ethanol (EtOH) liquid diet combined with the Gao-Binge model was used in the mouse study. Mouse primary hepatocytes and Huh-7 cells were used for cell experiments. The parameters of liver injury, inflammatory cytokines, and lipid metabolism were measured. RESULTS: Patients with alcoholic hepatitis had higher serum GDNF than control subjects. Expression of GDNF mRNA and protein was markedly increased in mice in the chronic-plus-binge ALD mouse model. The level of GDNF mRNA was upregulated in primary hepatic stellate cells isolated from ethanol-fed mouse liver. Ethanol induced GDNF expression in LX2 cells. The levels of inflammatory cytokines (tumor necrosis factor α, interleukin 1ß, and monocyte chemotactic protein 1) were significantly increased after GDNF stimulation in primary hepatocytes and Huh-7 cells. After GDNF stimulation, levels of both p-AKT and p-NF-κB were significantly increased in primary hepatocytes and Huh-7 cells. The NF-κB activity induced by GDNF was significantly decreased by an NF-κB inhibitor, which limited hepatocyte injury and inflammation. CONCLUSIONS: The concentration of GDNF is increased in the circulation of ALD patients. GDNF promotes alcohol-induced liver injury and inflammation via the activation of NF-κB, which mediates hepatocyte injury and inflammatory cytokine expression. Based on these findings, GDNF is a potential therapeutic target for preventing or ameliorating liver injury in ALD.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Liver Diseases, Alcoholic , Animals , Chemical and Drug Induced Liver Injury, Chronic/metabolism , Cytokines/metabolism , Disease Models, Animal , Ethanol/adverse effects , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Glial Cell Line-Derived Neurotrophic Factor/therapeutic use , Humans , Inflammation/metabolism , Liver/metabolism , Liver Diseases, Alcoholic/metabolism , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism , RNA, Messenger/metabolism
19.
Sci Total Environ ; 824: 153845, 2022 Jun 10.
Article in English | MEDLINE | ID: mdl-35176390

ABSTRACT

Pharmaceuticals are increasingly used in daily life and have been massively discharged to the aquatic environment. The removal of pharmaceuticals from water by various nanomaterials including graphitic carbon nitride (g-C3N4) has received extensive attention. Herein, we synthesized a carbon-defective carbon nitride with pore structure through a simple thermal polymerization method for photodegradation of lidocaine, mepivacaine and ropivacaine (typical amide local anesthetics). The results showed that the degradation process conformed to the pseudo-first-order reaction kinetics, and the degradation rate constant of organic pollutants using CCN-600 (i.e., g-C3N4 synthesized at 600 °C) reached 5.05 × 10-2 min-1, about 2.5 times higher than that of the prototype g-C3N4 (2.09 × 10-2 min-1). The capture experiment of active species and the electron paramagnetic resonance (EPR) test demonstrated that superoxide radical (O2-) played a major role in the degradation process. Based on the possible photodegraded intermediate products identified, the degradation pathways were deduced. This study provides not only a new strategy for fabrication of pore-structured g-C3N4 with carbon vacancy, but also a reference method for the treatment of pharmaceuticals in water bodies.


Subject(s)
Carbon , Water , Catalysis , Graphite , Nitrogen Compounds , Pharmaceutical Preparations
20.
Front Genet ; 12: 735786, 2021.
Article in English | MEDLINE | ID: mdl-34956310

ABSTRACT

Mongolians dwell at the Eastern Eurasian Steppe, where is the agriculture and pasture interlaced area, practice pastoral subsistence strategies for generations, and have their own complex genetic formation history. There is evidence that the eastward expansion of Western Steppe herders transformed the lifestyle of post-Bronze Age Mongolia Plateau populations and brought gene flow into the gene pool of Eastern Eurasians. Here, we reported genome-wide data for 42 individuals from the Inner Mongolia Autonomous Region of North China. We observed that our studied Mongolians were structured into three distinct genetic clusters possessing different genetic affinity with previous studied Inner Mongolians and Mongols and various Eastern and Western Eurasian ancestries: two subgroups harbored dominant Eastern Eurasian ancestry from Neolithic millet farmers of Yellow River Basin; another subgroup derived Eastern Eurasian ancestry primarily from Neolithic hunter-gatherers of North Asia. Besides, three-way/four-way qpAdm admixture models revealed that both north and southern Western Eurasian ancestry related to the Western Steppe herders and Iranian farmers contributed to the genetic materials into modern Mongolians. ALDER-based admixture coefficient and haplotype-based GLOBETROTTER demonstrated that the former western ancestry detected in modern Mongolian could be recently traced back to a historic period in accordance with the historical record about the westward expansion of the Mongol empire. Furthermore, the natural selection analysis of Mongolians showed that the Major Histocompatibility Complex (MHC) region underwent significantly positive selective sweeps. The functional genes, alcohol dehydrogenase (ADH) and lactase persistence (LCT), were not identified, while the higher/lower frequencies of derived mutations were strongly correlated with the genetic affinity to East Asian/Western Eurasian populations. Our attested complex population movement and admixture in the agriculture and pasture interlaced area played an important role in the formation of modern Mongolians.

SELECTION OF CITATIONS
SEARCH DETAIL
...