Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 95(5): 1372-1378, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38200323

ABSTRACT

BACKGROUND: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood. Little is known about how infancy growth trajectories affect adiposity in early childhood in LGA. METHODS: In the Shanghai Birth Cohort, we followed up 259 LGA (birth weight >90th percentile) and 1673 appropriate-for-gestational age (AGA, 10th-90th percentiles) children on body composition (by InBody 770) at age 4 years. Adiposity outcomes include body fat mass (BFM), percent body fat (PBF), body mass index (BMI), overweight/obesity, and high adiposity (PBF >85th percentile). RESULTS: Three weight growth trajectories (low, mid, and high) during infancy (0-2 years) were identified in AGA and LGA subjects separately. BFM, PBF and BMI were progressively higher from low- to mid-to high-growth trajectories in both AGA and LGA children. Compared to the mid-growth trajectory, the high-growth trajectory was associated with greater increases in BFM and the odds of overweight/obesity or high adiposity in LGA than in AGA children (tests for interactions, all P < 0.05). CONCLUSIONS: Weight trajectories during infancy affect adiposity in early childhood regardless of LGA or not. The study is the first to demonstrate that high-growth weight trajectory during infancy has a greater impact on adiposity in early childhood in LGA than in AGA subjects. IMPACT: Large-for-gestational age (LGA), a marker of fetal overgrowth, has been linked to obesity in adulthood, but little is known about how weight trajectories during infancy affect adiposity during early childhood in LGA subjects. The study is the first to demonstrate a greater impact of high-growth weight trajectory during infancy (0-2 years) on adiposity in early childhood (at age 4 years) in subjects with fetal overgrowth (LGA) than in those with normal birth size (appropriate-for-gestational age). Weight trajectory monitoring may be a valuable tool in identifying high-risk LGA children for close follow-ups and interventions to decrease the risk of obesity.

2.
Front Pediatr ; 11: 1078048, 2023.
Article in English | MEDLINE | ID: mdl-37274820

ABSTRACT

Aim: Adverse (poor or excessive) fetal growth "programs" an elevated risk of type 2 diabetes. Fatty acid binding protein 4 (FABP4) has been implicated in regulating insulin sensitivity and lipid metabolism relevant to fetal growth. We sought to determine whether FABP4 is associated with poor or excessive fetal growth and fetal lipids. Methods: In a nested case-control study in the Shanghai Birth Cohort including 60 trios of small-for-gestational-age (SGA, an indicator of poor fetal growth), large-for-gestational-age (LGA, an indicator of excessive fetal growth) and optimal-for-gestational-age (OGA, control) infants, we measured cord blood concentrations of FABP4 and lipids [high-density lipoprotein (HDL) and low-density lipoprotein (LDL) cholesterols, triglycerides (TG)]. Results: Adjusting for maternal and neonatal characteristics, higher cord blood FABP4 concentrations were associated with a lower odds of SGA [OR = 0.29 (0.11-0.77) per log unit increment in FABP4, P = 0.01], but were not associated with LGA (P = 0.46). Cord blood FABP4 was positively correlated with both LDL (r = 0.29, P = 0.025) and HDL (r = 0.33, P = 0.01) in LGA infants only. Conclusion: FABP4 was inversely associated with the risk of SGA. The study is the first to demonstrate LGA-specific positive correlations of cord blood FABP4 with HDL and LDL cholesterols, suggesting a role of FABP4 in fetal lipid metabolism in subjects with excessive fetal growth.

3.
Front Endocrinol (Lausanne) ; 13: 875180, 2022.
Article in English | MEDLINE | ID: mdl-35721735

ABSTRACT

Gestational diabetes mellitus (GDM) "program" an elevated risk of metabolic syndrome in the offspring. Epigenetic alterations are a suspected mechanism. GDM has been associated with placental DNA methylation changes in some epigenome-wide association studies. It remains unclear which genes or pathways are affected, and whether any placental differential gene methylations are correlated to fetal growth or circulating metabolic health biomarkers. In an epigenome-wide association study using the Infinium MethylationEPIC Beadchip, we sought to identify genome-wide placental differentially methylated genes and enriched pathways in GDM, and to assess the correlations with fetal growth and metabolic health biomarkers in cord blood. The study samples were 30 pairs of term placentas in GDM vs. euglycemic pregnancies (controls) matched by infant sex and gestational age at delivery in the Shanghai Birth Cohort. Cord blood metabolic health biomarkers included insulin, C-peptide, proinsulin, IGF-I, IGF-II, leptin and adiponectin. Adjusting for maternal age, pre-pregnancy BMI, parity, mode of delivery and placental cell type heterogeneity, 256 differentially methylated positions (DMPs,130 hypermethylated and 126 hypomethylated) were detected between GDM and control groups accounting for multiple tests with false discovery rate <0.05 and beta-value difference >0.05. WSCD2 was identified as a differentially methylated gene in both site- and region-level analyses. We validated 7 hypermethylated (CYP1A2, GFRA1, HDAC4, LIMS2, NAV3, PAX6, UPK1B) and 10 hypomethylated (DPP10, CPLX1, CSMD2, GPR133, NRXN1, PCSK9, PENK, PRDM16, PTPRN2, TNXB) genes reported in previous epigenome-wide association studies. We did not find any enriched pathway accounting for multiple tests. DMPs in 11 genes (CYP2D7P1, PCDHB15, ERG, SIRPB1, DKK2, RAPGEF5, CACNA2D4, PCSK9, TSNARE1, CADM2, KCNAB2) were correlated with birth weight (z score) accounting for multiple tests. There were no significant correlations between placental gene methylations and cord blood biomarkers. In conclusions, GDM was associated with DNA methylation changes in a number of placental genes, but these placental gene methylations were uncorrelated to the observed metabolic health biomarkers (fetal growth factors, leptin and adiponectin) in cord blood. We validated 17 differentially methylated placental genes in GDM, and identified 11 differentially methylated genes relevant to fetal growth.


Subject(s)
Diabetes, Gestational , Adiponectin/metabolism , Biomarkers , China , DNA Methylation , Diabetes, Gestational/metabolism , Female , Fetal Blood/metabolism , Fetal Development , Humans , Infant , Leptin/metabolism , Parity , Placenta/metabolism , Pregnancy , Proprotein Convertase 9/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...