Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(2): 3057-3065, 2022 Jan 19.
Article in English | MEDLINE | ID: mdl-34985852

ABSTRACT

Modulation of the microstructure and configurational entropy tuning are the core stratagem for improving thermoelectric performance. However, the correlation of evolution among the preparation methods, chemical composition, structural defects, configurational entropy, and thermoelectric properties is still unclear. Herein, two series of AgSbTe2-based compounds were synthesized by an equilibrium melting-slow-cooling method and a nonequilibrium melting-quenching-spark plasma sintering (SPS) method, respectively. The equilibrium method results in coarse grains with a size of >300 µm in the samples and a lower defect concentration, leading to higher carrier mobility of 10.66 cm2 V-1 s-1 for (Ag2Te)0.41(Sb2Te3)0.59 compared to the sample synthesized by nonequilibrium preparation of 1.83 cm2 V-1 s-1. Moreover, tuning the chemical composition of nonstoichiometric AgSbTe2 effectively improves the configurational entropy and creates a large number of cation vacancies, which evolve into dense dislocations in the samples. Owing to all of these in conjunction with the strong inharmonic vibration of lattice, an ultralow thermal conductivity of 0.51 W m-1 K-1 at room temperature is achieved for the (Ag2Te)0.42(Sb2Te3)0.58 sample synthesized by the equilibrium preparation method. Due to the enhanced carrier mobility, optimized carrier concentration, and low thermal conductivity, the (Ag2Te)0.42(Sb2Te3)0.58 sample synthesized by the equilibrium preparation method possesses the highest ZT of 1.04 at 500 K, more than 60% higher than 0.64 at 500 K of the same composition synthesized by nonequilibrium preparation.

2.
ACS Appl Mater Interfaces ; 13(50): 60216-60226, 2021 Dec 22.
Article in English | MEDLINE | ID: mdl-34874703

ABSTRACT

Bismuth telluride-based alloys are the best performing thermoelectric materials near room temperature. Grain size refinement and nanostructuring are the core stratagems for improving thermoelectric and mechanical properties. However, the donor-like effect induced by grain size refinement strongly restricts the thermoelectric properties especially in the vicinity of room temperature. In this study, the formation mechanism for the donor-like effect in Bi2Te3-based compounds was revealed by synthesizing five batches of polycrystalline samples. We demonstrate that the donor-like effect in Bi2Te3-based compounds is strongly related to the vacancy defects (VBi‴ and VTe···) induced by the fracturing process and oxygen in air for the first time. The oxygen-induced donor-like effect dramatically increases the carrier concentration from 2.5 × 1019 cm-3 for the zone melting ingot and bulks sintered with powders ground under an inert atmosphere to 7.5 × 1019 cm-3, which is largely beyond the optimum carrier concentration and seriously deteriorates the thermoelectric performance. Moreover, it is found that both avoiding exposure to air and eliminating the thermal vacancy defects (VBi‴ and VTe···) via heat treatment before exposure to air can effectively remove the donor-like effect, producing almost the same carrier concentration and Seebeck coefficient as those of the zone melting ingot for these samples. Therefore, a defect equation of oxygen-induced donor-like effect was proposed and was further explicitly corroborated by positron annihilation measurement. With the removal of donor-like effect and improved texturing via multiple hot deformation (HD) processes, a maximum power factor of 3.5 mW m-1 K-2 and a reproducible maximum ZT value of 1.01 near room temperature are achieved. This newly proposed defect equation of the oxygen-induced donor-like effect will provide a guideline for developing higher-performance V2VI3 polycrystalline materials for near-room-temperature applications.

3.
ACS Appl Mater Interfaces ; 12(23): 26330-26341, 2020 Jun 10.
Article in English | MEDLINE | ID: mdl-32401006

ABSTRACT

Cd-containing polycrystalline Bi0.46Sb1.54Te3 samples with precisely controlled phase composition were synthesized by conventional melting-quenching-annealing technique and a melt-spinning method. The pseudo ternary phase diagram for Cd-Bi/Sb-Te in the region near Bi0.46Sb1.54Te3 was systematically studied. Cd serves as an acceptor dopant contributing holes, whereas for samples doped with CdTe, the combined effects of the substitution of Sb/Bi with Cd and the formation of Sb/BiTe antisite defects leads to the increase in hole concentration. Moreover, upon doping with Cd, the lattice thermal conductivity decreases significantly owing to the intensified point defect phonon scattering. The sample with Cd content of 0.01 attains the maximum ZT of 1.15 at 425 K. The utilization of melt-spinning method brings about the in situ nanostructured CdTe and grain size refinement, which further reduce the lattice thermal conductivity while preserving excellent electrical performance. As a result, a higher ZT of 1.30 at 425 K is realized with CdTe content x = 0.005.

SELECTION OF CITATIONS
SEARCH DETAIL
...