Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 13: 1003254, 2022.
Article in English | MEDLINE | ID: mdl-36544772

ABSTRACT

Central nervous system (CNS) infections in adults are rare because of normal immunity and the existence of the blood brain barrier, which prevents the invasion of pathogenic microorganisms. Liver transplant recipients are at an increased risk of opportunistic infections (OI) due to immunosuppressive therapy compared to those with normal immunity. Early diagnosis and timely implementation of treatment are critical for the successful treatment of these infections. We present two cases of intracerebral OI after orthotopic liver transplantation (OLT), with different clinical presentations. Patient 1 presented with epileptic seizures, mainly manifested as unresponsiveness, unconsciousness, and coma complicated with involuntary limb twitching. Patient 2 presented with a consciousness disorder, mainly manifested as unclear consciousness content, poor orientation, calculation power, and logical ability. Next-generation sequencing (NGS) examination of the cerebrospinal fluid confirmed human herpesvirus 6 B (HHV-6B) infection in patient 1 and intracranial Aspergillus infection in patient 2. Intracranial OI has insidious onset and atypical clinical manifestations. NGS can allow for the proper diagnosis and monitoring of the effects of treatment.


Subject(s)
Liver Transplantation , Opportunistic Infections , Roseolovirus Infections , Adult , Humans , Liver Transplantation/adverse effects , Immunosuppressive Agents/adverse effects , Transplantation, Homologous/adverse effects , Opportunistic Infections/diagnosis , Opportunistic Infections/drug therapy , Opportunistic Infections/etiology
2.
Front Immunol ; 13: 1043667, 2022.
Article in English | MEDLINE | ID: mdl-36685594

ABSTRACT

Hepatocellular carcinoma (HCC) constitutes most primary liver cancers and is one of the most lethal and life-threatening malignancies globally. Unfortunately, a substantial proportion of HCC patients are identified at an advanced stage that is unavailable for curative surgery. Thus, palliative therapies represented by multi-tyrosine kinase inhibitors (TKIs) sorafenib remained the front-line treatment over the past decades. Recently, the application of immune checkpoint inhibitors (ICIs), especially targeting the PD-1/PD-L1/CTLA-4 axis, has achieved an inspiring clinical breakthrough for treating unresectable solid tumors. However, many HCC patients with poor responses lead to limited benefits in clinical applications, which has quickly drawn researchers' attention to the regulatory mechanisms of immune checkpoints in HCC immune evasion. Evasion of immune surveillance by cancer is attributed to intricate reprogramming modulation in the tumor microenvironment. Currently, more and more studies have found that epigenetic modifications, such as chromatin structure remodeling, DNA methylation, histone post-translational modifications, and non-coding RNA levels, may contribute significantly to remodeling the tumor microenvironment to avoid immune clearance, affecting the efficacy of immunotherapy for HCC. This review summarizes the rapidly emerging progress of epigenetic-related changes during HCC resistance to ICIs and discusses the mechanisms of underlying epigenetic therapies available for surmounting immune resistance. Finally, we summarize the clinical advances in combining epigenetic therapies with immunotherapy, aiming to promote the formation of immune combination therapy strategies.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Immune Checkpoint Inhibitors/therapeutic use , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Sorafenib/therapeutic use , Epigenesis, Genetic , Tumor Microenvironment/genetics
3.
Perioper Med (Lond) ; 10(1): 44, 2021 Dec 09.
Article in English | MEDLINE | ID: mdl-34879867

ABSTRACT

BACKGROUND: Although dexmedetomidine (Dex) is known to reduce bispectral index (BIS) values and propofol dosage, there is little information regarding raw electroencephalography (EEG) changes related to Dex deepening of propofol general anesthesia (GA). This study investigated the Dex effects on propofol GA via analysis of EEG changes. METHODS: A study cohort of 21 surgical patients (age range, 20-60 years) categorized as American Society of Anesthesiologists (ASA) class I or II was enrolled. We used time-varying spectral and bicoherence methods to compare electroencephalogram signatures 5 min before versus 10 min after intravenous Dex injection under propofol GA. The means and medians are reported with 95% confidence intervals (CIs) and inter-quartile ranges (IQRs), respectively. RESULTS: Dex augmented the slow waves power and theta (θ) oscillation bicoherence peak from a mean (95% CI) of 22.1% (19.0, 25.2) to 25.2% (21.8, 28.6). Meanwhile, Dex reduced alpha (α) peak power and bicoherence from 3.5 dB (1.0, 6.0) and 41.5% (34.0, 49.0) to 1.7 dB (- 0.6, 4.0) and 35.4% (29.0, 41.8), respectively, while diminishing the median frequency of α oscillation peak values and the mean frequency of α peaks in bicoherence spectra from 12.0 Hz (IQR 11.2, 12.6) and 11.7 Hz (11.3, 12.2) to 11.1 Hz (IQR 10.3, 11.8) and 11.2 Hz (10.9, 11.6), respectively. CONCLUSIONS: Profound EEG changes support the supposition that Dex enhances propofol-induced GA from a moderate to a deeper state. The present findings provide a theoretical basis and reference regarding protocols aimed at reducing anesthetic/sedative dosage while maintaining sufficient depth of GA. CLINICAL TRIAL REGISTRATION: ChiCTR, ChiCTR1900026955 . Registered on 27 October 2019.

4.
Environ Sci Pollut Res Int ; 25(28): 28237-28247, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30074140

ABSTRACT

Adenosine triphosphate (ATP), an indispensable molecule that provides energy for essentially all cellular processes, has been shown to be affected by some magnetic fields (MFs). Although people are frequently exposed to various static and power frequency MFs in their daily lives, the exact effects of these MFs of different frequencies have not been systematically investigated. Here, we tested 6-mT MFs with 0, 50, and 120 Hz for their effects on cellular ATP levels in 11 different cell lines. We found that the 6-mT static magnetic field (SMF) either does not affect or increase cellular ATP levels, while 6-mT 50-Hz MF either does not affect or decrease cellular ATP levels. In contrast, 6-mT 120-Hz MF has variable effects. We examined the mitochondrial membrane potential (MMP) as well as reactive oxygen species (ROS) in four different cell lines, but did not find their direct correlation with ATP levels. Although none of the ATP level changes induced by these three different frequencies of 6-mT MFs are dramatic, these results may be used to explain some differential cellular responses of various cell lines to different frequency MFs.


Subject(s)
Adenosine Triphosphate/metabolism , Magnetic Fields , Animals , Cell Line , Cricetulus , Humans , Membrane Potential, Mitochondrial , Rats , Reactive Oxygen Species/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...