Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Bioact Mater ; 27: 409-428, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37152712

ABSTRACT

Diabetic wound healing has become a serious healthcare challenge. The high-glucose environment leads to persistent bacterial infection and mitochondrial dysfunction, resulting in chronic inflammation, abnormal vascular function, and tissue necrosis. To solve these issues, we developed a double-network hydrogel, constructed with pluronic F127 diacrylate (F127DA) and hyaluronic acid methacrylate (HAMA), and enhanced by SS31-loaded mesoporous polydopamine nanoparticles (MPDA NPs). As components, SS31, a mitochondria-targeted peptide, maintains mitochondrial function, reduces mitochondrial reactive oxygen species (ROS) and thus regulates macrophage polarization, as well as promoting cell proliferation and migration, while MPDA NPs not only scavenge ROS and exert an anti-bacterial effect by photothermal treatment under near-infrared light irradiation, but also control release of SS31 in response to ROS. This F127DA/HAMA-MPDA@SS31 (FH-M@S) hydrogel has characteristics of adhesion, superior biocompatibility and mechanical properties which can adapt to irregular wounds at different body sites and provide sustained release of MPDA@SS31 (M@S) NPs. In addition, in a diabetic rat full thickness skin defect model, the FH-M@S hydrogel promoted macrophage M2 polarization, collagen deposition, neovascularization and wound healing. Therefore, the FH-M@S hydrogel exhibits promising therapeutic potential for skin regeneration.

2.
J Bone Joint Surg Am ; 104(23): 2108-2116, 2022 12 07.
Article in English | MEDLINE | ID: mdl-36325763

ABSTRACT

BACKGROUND: There is currently no ideal treatment for osteochondral lesions of the femoral head (OLFH) in young patients. METHODS: We performed a 1-year single-arm study and 2 additional years of follow-up of patients with a large (defined as >3 cm 2 ) OLFH treated with insertion of autologous costal cartilage graft (ACCG) to restore femoral head congruity after lesion debridement. Twenty patients ≤40 years old who had substantial hip pain and/or dysfunction after nonoperative treatment were enrolled at a single center. The primary outcome was the change in Harris hip score (HHS) from baseline to 12 months postoperatively. Secondary outcomes included the EuroQol visual analogue scale (EQ VAS), hip joint space width, subchondral integrity on computed tomography scanning, repair tissue status evaluated with the Magnetic Resonance Observation of Cartilage Repair Tissue (MOCART) score, and evaluation of cartilage biochemistry by delayed gadolinium-enhanced magnetic resonance imaging of cartilage (dGEMRIC) and T2 mapping. RESULTS: All 20 enrolled patients (31.02 ± 7.19 years old, 8 female and 12 male) completed the initial study and the 2 years of additional follow-up. The HHS improved from 61.89 ± 6.47 at baseline to 89.23 ± 2.62 at 12 months and 94.79 ± 2.72 at 36 months. The EQ VAS increased by 17.00 ± 8.77 at 12 months and by 21.70 ± 7.99 at 36 months (p < 0.001 for both). Complete integration of the ACCG with the bone was observed by 12 months in all 20 patients. The median MOCART score was 85 (interquartile range [IQR], 75 to 95) at 12 months and 75 (IQR, 65 to 85) at the last follow-up (range, 24 to 38 months). The ACCG demonstrated magnetic resonance properties very similar to hyaline cartilage; the median ratio between the relaxation times of the ACCG and recipient cartilage was 0.95 (IQR, 0.90 to 0.99) at 12 months and 0.97 (IQR, 0.92 to 1.00) at the last follow-up. CONCLUSIONS: ACCG is a feasible method for improving hip function and quality of life for at least 3 years in young patients who were unsatisfied with nonoperative treatment of an OLFH. Promising long-term outcomes may be possible because of the good integration between the recipient femoral head and the implanted ACCG. LEVEL OF EVIDENCE: Therapeutic Level IV . See Instructions for Authors for a complete description of levels of evidence.


Subject(s)
Costal Cartilage , Humans , Female , Male , Adult , Young Adult , Femur Head/diagnostic imaging , Femur Head/surgery , Quality of Life
3.
Biomaterials ; 283: 121465, 2022 04.
Article in English | MEDLINE | ID: mdl-35286850

ABSTRACT

Repair of critical-size bone defects in patients with diabetes mellitus (DM) has always been a challenge in clinical treatment. The process of bone defect regeneration can be impaired by underlying diseases including DM, but the mechanism remains unclear. In bone tissue engineering, the integration of bionic coatings and bioactive components into basic scaffolds are common function-enhancing strategies. Small extracellular vesicles (sEVs) have been applied for cell-free tissue regeneration in the last few years. We previously reported that sEVs have flexible and easily-extensible potential, through modular design and engineering modification. The impairment of CD31hiendomucinhi endothelial cells (ECs) whose function is coupling of osteogenesis and angiogenesis, is considered an important contributor to diabetic bone osteopathy, and ZEB1, which is highly expressed in CD31hiendomucinhi ECs, promotes angiogenesis-dependent bone formation. Thus we believe these ECs hold much promise for use in bone regeneration. In addition, c(RGDfC) has been reported to be a highly-effective peptide targeting αvß3, which is highly expressed in the bone microenvironment. In this study, we developed a hyaluronic acid (HA)/poly-L-lysine (PLL) layer-by-layer (LbL) self-assembly coating on ß-TCP (ß-tricalcium phosphate) scaffolds providing immobilization of modularized engineered sEVs (with c(RGDfC) surface functionalization and ZEB1 loading) to facilitate bone defect regeneration under DM conditions. RNA-seq was used to explore possible molecular mechanisms, and the therapeutic effects of bone regeneration were systematically evaluated in vitro and in vivo. Our data demonstrated that this strategy could be very effective in promoting the repair of diabetic bone defects, by enhancing angiogenesis, promoting osteogenesis and inhibiting osteoclast formation.


Subject(s)
Diabetes Mellitus , Extracellular Vesicles , Bone Regeneration , Calcium Phosphates/chemistry , Diabetes Mellitus/therapy , Endothelial Cells , Humans , Osteogenesis , Tissue Engineering , Tissue Scaffolds/chemistry , Zinc Finger E-box-Binding Homeobox 1
4.
Bioact Mater ; 6(12): 4455-4469, 2021 Dec.
Article in English | MEDLINE | ID: mdl-34027234

ABSTRACT

Osteoarthritis (OA), characterized by chondrocyte apoptosis and disturbance of the balance between catabolism and anabolism of the extracellular matrix (ECM), is the most common age-related degenerative joint disease worldwide. As sleep has been found to be beneficial for cartilage repair, and circular RNAs (circRNAs) have been demonstrated to be involved in the pathogenesis of OA, we performed RNA sequencing (RNA-seq), and found circRNA3503 was significantly increased after melatonin (MT)-induced cell sleep. Upregulation of circRNA3503 expression completely rescued the effects of interleukin-1ß (IL-1ß), which was used to simulate OA, on apoptosis, ECM degradation- and synthesis-related genes. Mechanistically, circRNA3503 acted as a sponge of hsa-miR-181c-3p and hsa-let-7b-3p. Moreover, as we previously showed that small extracellular vesicles (sEVs) derived from synovium mesenchymal stem cells (SMSCs) can not only successfully deliver nucleic acids to chondrocytes, but also effectively promote chondrocyte proliferation and migration, we assessed the feasibility of sEVs in combination with sleep-related circRNA3503 as an OA therapy. We successfully produced and isolated circRNA3503-loaded sEVs (circRNA3503-OE-sEVs) from SMSCs. Then, poly(D,l-lactide)-b-poly(ethylene glycol)-b-poly(D,l-lactide) (PDLLA-PEG-PDLLA, PLEL) triblock copolymer gels were used as carriers of sEVs. Through in vivo and in vitro experiments, PLEL@circRNA3503-OE-sEVs were shown to be a highly-effective therapeutic strategy to prevent OA progression. Through multiple pathways, circRNA3503-OE-sEVs alleviated inflammation-induced apoptosis and the imbalance between ECM synthesis and ECM degradation by acting as a sponge of hsa-miR-181c-3p and hsa-let-7b-3p. In addition, circRNA3503-OE-sEVs promoted chondrocyte renewal to alleviate the progressive loss of chondrocytes. Our results highlight the potential of PLEL@circRNA3503-OE-sEVs for preventing OA progression.

5.
iScience ; 24(3): 102200, 2021 Mar 19.
Article in English | MEDLINE | ID: mdl-33733065

ABSTRACT

Functional healing of tendon injuries remains a great challenge. Small extracellular vesicles (sEVs) have received attention as pro-regenerative agents. H19 overexpression could bring tendon regenerative ability, but the mechanism is still not fully elucidated, and reliable method for delivery of long non-coding RNAs (LncRNAs) was demanded. We identified the downstream mechanism of H19, the activation of yes-associated protein (YAP) via the H19-PP1-YAP axis. We established tendon stem/progenitor cells (TSPCs) stably overexpressing H19 with CRISPR-dCas9-based hnRNP A2/B1 activation (H19-CP-TSPCs). H19-OL-sEVs (H19 "overloading" sEVs) could be produced effectively from H19-CP-TSPCs. Only H19-OL-sEVs were able to significantly load large amounts of H19 rather than other competitors, and the potential of H19-OL-sEVs to promote tendon healing was far better than that of other competitors. Our study established a relatively reliable method for enrichment of LncRNAs into sEVs, providing new hints for modularized sEV-based therapies, and modularized sEVs represented a potential strategy for tendon regeneration.

6.
Cell Commun Signal ; 18(1): 163, 2020 10 20.
Article in English | MEDLINE | ID: mdl-33081785

ABSTRACT

In recent years, it has been demonstrated that extracellular vesicles (EVs) can be released by almost all cell types, and detected in most body fluids. In the tumour microenvironment (TME), EVs serve as a transport medium for lipids, proteins, and nucleic acids. EVs participate in various steps involved in the development and progression of malignant tumours by initiating or suppressing various signalling pathways in recipient cells. Although tumour-derived EVs (T-EVs) are known for orchestrating tumour progression via systemic pathways, EVs from non-malignant cells (nmEVs) also contribute substantially to malignant tumour development. Tumour cells and non-malignant cells typically communicate with each other, both determining the progress of the disease. In this review, we summarise the features of both T-EVs and nmEVs, tumour progression, metastasis, and EV-mediated chemoresistance in the TME. The physiological and pathological effects involved include but are not limited to angiogenesis, epithelial-mesenchymal transition (EMT), extracellular matrix (ECM) remodelling, and immune escape. We discuss potential future directions of the clinical application of EVs, including diagnosis (as non-invasive biomarkers via liquid biopsy) and therapeutic treatment. This may include disrupting EV biogenesis and function, thus utilising the features of EVs to repurpose them as a therapeutic tool in immunotherapy and drug delivery systems. We also discuss the overall findings of current studies, identify some outstanding issues requiring resolution, and propose some potential directions for future research. Video abstract.


Subject(s)
Extracellular Vesicles/metabolism , Tumor Microenvironment , Animals , Humans , Models, Biological , Neoplasms/diagnosis , Neoplasms/pathology , Neoplasms/therapy
7.
Adv Biosyst ; 4(9): e2000152, 2020 09.
Article in English | MEDLINE | ID: mdl-32803878

ABSTRACT

The prognosis for osteosarcoma (OS) continues to be unsatisfactory due to tumor recurrence as a result of metastasis and drug resistance. Several studies have shown that Ewing sarcoma associated transcript 1 (EWSAT1) plays an important role in the progression of OS. Exosomes (Exos) act as important carriers in intercellular communication and play an important role in the tumor microenvironment, especially in tumor-induced angiogenesis. Nonetheless, the specific mechanism via which EWSAT1 and Exos regulate OS progression is unknown, and whether they can be effective therapeutic targets also requires verification. Hence, in this study, it is aimed to investigate the mechanisms of action of EWSAT1 and Exos. EWSAT1 significantly promotes proliferation, migration, colony formation, and survival of OS. EWSAT1 regulates OS-induced angiogenesis via two mechanisms, called the "double stacking effect," which is a combination of the increase in sensitivity/reactivity of vascular endothelial cells triggered by Exos-carrying EWSAT1, and the EWSAT1-induced increase in angiogenic factor secretion. In vivo experiments further validates the "double stacking effect" and shows that EWSAT1-KD effectively inhibits tumor growth in OS. The above observations indicate that EWSAT1 can be used as not only a potential diagnostic and prognostic marker, but also as a precise therapeutic target for OS.


Subject(s)
Exosomes/metabolism , Neovascularization, Pathologic/metabolism , Osteosarcoma , RNA, Long Noncoding , Animals , Cell Line, Tumor , Disease Progression , Humans , Mice , Mice, Inbred BALB C , Mice, Nude , Osteosarcoma/genetics , Osteosarcoma/metabolism , Osteosarcoma/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism
8.
BMC Musculoskelet Disord ; 21(1): 421, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611412

ABSTRACT

BACKGROUND: Although double-plate fixation (DP), i.e., fixation with a combination of a main lateral plate (LP) and a support medial plate (MP), is a relatively mature method for treating femoral shaft non-union with bone defect causes complications. The purpose of this study was to evaluate LP fixation with a 3D-printed, personalized, biomechanics-specific ß-TCP bioceramic rod system (LP + 3DpbsBRS) as an alternative with less collateral damage. METHODS: Structure-specific finite element modelling was used to simulate femoral shaft non-union with bone defects and treatment with an LP only as the blank control. Then, the peak von Mises stress (VMS), the VMS distribution, and the plate displacement were determined to compare the effectiveness of LP + CBG (cancellous bone grafting), DP + CBG, and LP + 3DpbsBRS under 850 N of axial force. RESULTS: Our results indicated that the peak VMS was 260.2 MPa (LP + 3DpbsBRS), 249.6 MPa (MP in DP + CBG), 249.3 MPa (LP in DP + CBG), and 502.4 MPa (LP + CBG). The bending angle of the plate was 1.2° versus 1.0° versus 1.1° versus 2.3° (LP + 3DpbsBRS versus MP in DP + CBG versus LP in DP + CBG versus LP + CBG). CONCLUSION: The 3DpbsBRS in the LP + 3DpbsBRS group could replace the MP in the DP + CBG group by providing similar medial mechanical support. Furthermore, avoiding the use of an MP provides better protection of the soft tissue and vasculature.


Subject(s)
Bone Plates , Femur/anatomy & histology , Finite Element Analysis , Fracture Fixation, Internal/instrumentation , Fracture Fixation, Internal/methods , Biomechanical Phenomena , Bone Screws , Calcium Phosphates , Femoral Fractures/surgery , Humans , Male , Models, Anatomic , Precision Medicine , Printing, Three-Dimensional , Stress, Mechanical , Young Adult
9.
J Orthop Surg Res ; 15(1): 144, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32293488

ABSTRACT

OBJECTIVE: Atrophic distal femur non-union with bone defect (ADFNBD) has been a worldwide challenge to treat due to the associated biological and mechanical problems. The purpose of this study was to introduce a new solution involving the use of a J-shaped iliac crest bone graft (J-bone) combined with double-plate (DP) in the treatment of femoral non-union. METHODS: Clinically, 18 patients with ADFNBD were included in this retrospective study and were treated with a combination of J-bone graft and DP. The average follow-up time was 22.1 ± 5.5 months (range, 14 to 34 months). The imaging information and knee joint activity tests and scores were used to evaluate the time to weight-bearing, the time to non-union healing, and the knee joint mobility. A finite element analysis was used to evaluate the differences between the following: (1) the use of a lateral locking plate (LLP) only group (LLP-only), (2) a DP only group (DP-only), (3) a DP with a J-bone group (DP+J-bone), and (4) an LLP with a J-bone group (LLP+J-bone) in the treatment of ADFNBD. A finite element analysis ABAQUS 6.14 (Dassault systems, USA) was used to simulate the von Mises stress distribution and model displacement of the plate during standing and normal walking. RESULT: All patients with non-union and bone defect in the distal femur achieved bone healing at an average of 22.1 ± 5.5 months (range, 14 to 34 months) postoperatively. The average healing time was 6.72 ± 2.80 months. The knee Lysholm score was significantly improved compared with that before surgery. Under both 750 N and 1800 N axial stress, the maximum stress with the DP+J-bone structure was less than that of the LLP+J-bone and DP-only structures, and the maximum stress of J-bone in the DP+J-bone was significantly less than that of the LLP+J-bone+on structure. The fracture displacement of the DP+J-bone structure was also smaller than that of the LLP+J-bone and DP-only structures. CONCLUSION: J-bone combined with DP resulted in less maximum stress and less displacement than did a J-bone combined with an LLP or a DP-only graft for the treatment of ADFNBD. This procedure was associated with less surgical trauma, early rehabilitation exercise after surgery, a high bone healing rate, and a satisfactory rate of functional recovery. Therefore, a combination of J-bone and DP is an effective and important choice for the treatment of ADFNBD.


Subject(s)
Biomechanical Phenomena/physiology , Bone Plates , Bone Transplantation/methods , Femoral Fractures/diagnostic imaging , Femoral Fractures/surgery , Fractures, Ununited/diagnostic imaging , Adult , Atrophy/diagnostic imaging , Atrophy/physiopathology , Female , Femoral Fractures/physiopathology , Femur/diagnostic imaging , Femur/injuries , Femur/physiology , Finite Element Analysis , Follow-Up Studies , Fracture Healing/physiology , Fractures, Ununited/physiopathology , Humans , Male , Middle Aged , Retrospective Studies , Young Adult
11.
FEBS J ; 286(6): 1101-1119, 2019 03.
Article in English | MEDLINE | ID: mdl-30656849

ABSTRACT

Alcohol is considered a leading risk factor for osteopenia. Our previous research indicated that the Akt/GSK-3ß/ß-catenin pathway plays a critical role in the ethanol-induced antiosteogenic effect in bone mesenchymal stem cells (BMSCs). PI3K/Akt is negatively regulated by the phosphatase and tensin homolog (PTEN) phosphatase. In this study, we found that ethanol increased PTEN expression in the BMSCs and bone tissue of ethanol-treated Sprague-Dawley rats. PTEN upregulation impaired Akt recruitment to the plasma membrane and suppressed Akt phosphorylation at Ser473, thereby inhibiting Akt/GSK3ß/ß-catenin signaling and the expression of COL1 and OCN in BMSCs in vitro and in vivo. The results of in vivo assays indicated that PTEN inhibition protected bone tissue against ethanol. Interestingly, our data revealed that following ethanol stimulation, PTEN and PTEN pseudogene 1 (PTENP1) mRNA expression was increased in a time-dependent manner, resulting in an increased PTEN protein level. In addition, ethanol upregulated PTEN expression and decreased PTEN phosphorylation (p-PTEN), indicating an increase in functional PTEN levels. In summary, the ethanol-mediated transcriptional and post-transcriptional regulation of PTEN impaired downstream Akt/GSK3ß/ß-catenin signaling and BMSC osteogenic differentiation. Therefore, we propose that Akt/GSK3ß/ß-catenin activation via PTEN inhibition may be a potential therapeutic approach for preventing the development of alcohol-induced osteopenia.


Subject(s)
Bone Diseases, Metabolic/pathology , Cell Membrane/metabolism , Ethanol/toxicity , Glycogen Synthase Kinase 3 beta/metabolism , PTEN Phosphohydrolase/metabolism , Proto-Oncogene Proteins c-akt/metabolism , beta Catenin/metabolism , Animals , Bone Diseases, Metabolic/chemically induced , Bone Diseases, Metabolic/metabolism , Cell Membrane/drug effects , Cells, Cultured , Central Nervous System Depressants/toxicity , Gene Expression Regulation/drug effects , Glycogen Synthase Kinase 3 beta/genetics , Male , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/drug effects , Mesenchymal Stem Cells/metabolism , PTEN Phosphohydrolase/genetics , Proto-Oncogene Proteins c-akt/genetics , Rats , Rats, Sprague-Dawley , beta Catenin/genetics
12.
Cell Commun Signal ; 17(1): 6, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30658653

ABSTRACT

Throughout human life, bone is constantly in a delicate dynamic equilibrium of synthesis and resorption, hosting finely-tuned bone mineral metabolic processes for bone homeostasis by collaboration or symphony among several cell types including osteoclasts (OCs), osteoblasts (OBs), osteocytes (OYs), vascular endothelial cells (ECs) and their precursors. Beyond these connections, a substantial level of communication seems to occur between bone and other tissues, and together, they form an organic unit linked to human health and disease. However, the current hypothesis, which includes growth factors, hormones and specific protein secretion, incompletely explains the close connections among bone cells or between bone and other tissues. Extracellular vesicles (EVs) are widely-distributed membrane structures consisting of lipid bilayers, membrane proteins and intravesicular cargo (including proteins and nucleic acids), ranging from 30 nm to 1000 nm in diameter, and their characters have been highly conserved throughout evolution. EVs have targeting abilities and the potential to transmit multidimensional, abundant and complicated information, as powerful and substantial "dogrobbers" mediating intercellular communications. As research has progressed, EVs have gradually become thought of as "dogrobbers" in bone tissue-the "eternal battle field" -in a delicate dynamic balance of destruction and reconstruction. In the current review, we give a brief description of the major constituent cells in bone tissues and explore the progress of current research on bone-derived EVs. In addition, this review also discusses in depth not only potential directions for future research to breakthrough in this area but also problems existing in current research that need to be solved for a better understanding of bone tissues.


Subject(s)
Bone and Bones/metabolism , Extracellular Vesicles/metabolism , Animals , Bone Remodeling , Bone and Bones/cytology , Humans , Models, Biological
13.
Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi ; 32(12): 1597-1604, 2018 12 15.
Article in Chinese | MEDLINE | ID: mdl-30569690

ABSTRACT

Objective: To summarize the bioactive substances contained in bacterial extracellular vesicles (EVs) and their mechanisms in mediating bacterial-bacterial and bacterial-host interactions, as well as their mechanisms for use in implant infection-associated clinical guidance. Methods: A wide range of publications on bacterial-derived EVs were extensively reviewed, analyzed, and summarized. Results: Both gram-negative bacteria (G - bacteria) and gram-positive bacteria (G + bacteria) can secrete EVs which contain a variety of bioactive substances, including proteins, lipids, nucleic acids, and virulence factors, and mediate bacterial-bacterial and bacterial-host interactions. EVs play an important role in the pathogenic mechanism of bacteria. Conclusion: Bioactive substances contained within bacteria-derived EVs play an important role in the pathogenesis of bacterial infectious diseases. In-depth study and understanding of their pathogenic mechanisms can provide new insights which will improve early clinical diagnosis, prevention, and treatment of implant-associated infection. However, at present, research in this area is still in its infancy, and many more in-depth mechanisms need to be further studied.


Subject(s)
Extracellular Vesicles , Gram-Positive Bacteria , Gram-Positive Bacterial Infections , Gram-Positive Bacteria/pathogenicity , Humans , Virulence Factors
14.
Int J Biol Sci ; 14(12): 1610-1620, 2018.
Article in English | MEDLINE | ID: mdl-30416375

ABSTRACT

The circadian rhythm (CR) is a set of autonomous endogenous oscillators. Exposure to the 24-hour day-night cycle synchronizes our CR system, maintaining homeostasis and human health. Several mechanisms for the CR system have been proposed, including those underlying the function (transcriptional-translational negative-feedback loops, or TTFLs), mechanisms regulating the TTFLs, and the mechanism by which the "server clock" is synchronized to environmental time. Several pathways downstream of the "server clock" perform well-characterized biological functions. However, the synchronization between the "server clock" (the endogenous master clock seated in the suprachiasmatic nucleus within the hypothalamus) and the "client clock" (imbedded in nearly every cell in the form of interlocking TTFLs) is difficult to explain with current theories. Extracellular vesicles (EVs), which are involved in intercellular communication and have recently been found to participate in regulation of the "client clock", might be the answer to this question. In this review, we summarize the current knowledge of CRs, TTFLs, and EVs, examine research findings about the functions of EVs in the CR system, and discuss the issues requiring attention in future research.


Subject(s)
Circadian Rhythm/physiology , Extracellular Vesicles/metabolism , Animals , Circadian Rhythm/genetics , Exosomes/metabolism , Humans , Hypothalamus/metabolism , Protein Processing, Post-Translational/genetics , Protein Processing, Post-Translational/physiology , RNA, Untranslated/genetics , Suprachiasmatic Nucleus/metabolism
15.
J Extracell Vesicles ; 7(1): 1508271, 2018.
Article in English | MEDLINE | ID: mdl-30151077

ABSTRACT

Extracellular vesicles (EVs), which can be found in almost all body fluids, consist of a lipid bilayer enclosing proteins and nucleic acids from their cells of origin. EVs can transport their cargo to target cells and have therefore emerged as key players in intercellular communication. Their potential as either diagnostic and prognostic biomarkers or therapeutic drug delivery systems (DDSs) has generated considerable interest in recent years. However, conventional methods used to study EVs still have significant limitations including the time-consuming and low throughput techniques required, while at the same time the demand for better research tools is getting stronger and stronger. In the past few years, microfluidics-based technologies have gradually emerged and have come to play an essential role in the isolation, detection and analysis of EVs. Such technologies have several advantages, including low cost, low sample volumes, high throughput and precision. This review summarizes recent advances in microfluidics-based technologies, compares conventional and microfluidics-based technologies, and includes a brief survey of recent progress towards integrated "on-a-chip" systems. In addition, this review also discusses the potential clinical applications of "on-a-chip" systems, including both "liquid biopsies" for personalized medicine and DDS devices for precision medicine, and then anticipates the possible future participation of cloud-based portable disease diagnosis and monitoring systems, possibly with the participation of artificial intelligence (AI).

16.
Adv Sci (Weinh) ; 5(2): 1700449, 2018 02.
Article in English | MEDLINE | ID: mdl-29619297

ABSTRACT

Extracellular vesicles (EVs) are ubiquitous nanosized membrane vesicles consisting of a lipid bilayer enclosing proteins and nucleic acids, which are active in intercellular communications. EVs are increasingly seen as a vital component of many biological functions that were once considered to require the direct participation of stem cells. Consequently, transplantation of EVs is gradually becoming considered an alternative to stem cell transplantation due to their significant advantages, including their relatively low probability of neoplastic transformation and abnormal differentiation. However, as research has progressed, it is realized that EVs derived from native-source cells may have various shortcomings, which can be corrected by modification and optimization. To date, attempts are made to modify or improve almost all the components of EVs, including the lipid bilayer, proteins, and nucleic acids, launching a new era of modularized EV therapy through the "modular design" of EV components. One high-yield technique, generating EV mimetic nanovesicles, will help to make industrial production of modularized EVs a reality. These modularized EVs have highly customized "modular design" components related to biological function and targeted delivery and are proposed as a promising approach to achieve personalized and precision medicine.

17.
Int J Mol Med ; 41(6): 3433-3447, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29512684

ABSTRACT

Glucocorticoids (GCs) are the most common cause of atraumatic osteonecrosis of the femoral head (ONFH) because their effect compromises the osteogenic capability of bone marrow­derived mesenchymal stem cells (BMSCs). Valproic acid (VPA) is a widely used anti­epileptic and anti­convulsant drug. Previous studies have reported that VPA promotes osteogenic differentiation of MSCs in vitro and osteogenesis in vivo as a histone deacetylase (HDAC) inhibitor. The purpose of the present study was to investigate the efficacy of VPA as a precautionary treatment of ONFH after GC treatment in rats. In vitro, the effect of VPA, dexamethasone or a combination treatment of the two on the proliferation and osteogenic differentiation of human BMSCs was assessed using a Cell Counting Kit­8 and apoptosis assays, and by measuring the expression of proteins associated with osteogenesis. In vivo, a GC­induced ONFH model was established in rats and VPA was added during GC treatment to investigate the preventive effect of VPA against ONFH. Rat BMSCs were also extracted to investigate the osteogenic capacity. The results of micro­computed tomography scanning, angiography of the femoral head and histological and immunohistochemical analyses indicated that 11 of 15 rats induced with methylprednisolone (MP) presented with ONFH, while only 2 of 15 rats treated with a combination of MP and VPA developed ONFH. VPA produced beneficial effects on subchondral bone trabeculae in the femoral head with significant preservation of bone volume and blood supply, as well as improved osteogenic capability of BMSCs compared with those in rats treated with GC alone. In conclusion, VPA attenuated the inhibitory effect of GC on BMSC proliferation and osteogenesis by inhibiting apoptosis and elevating the expression of proteins associated with osteogenesis, which may contribute to the prevention of GC­induced ONFH in rats.


Subject(s)
Valproic Acid/therapeutic use , Animals , Apoptosis/drug effects , Cell Differentiation/drug effects , Femur Head Necrosis/drug therapy , Glucocorticoids/therapeutic use , Methylprednisolone/therapeutic use , Osteogenesis/drug effects , Rats , Rats, Sprague-Dawley , X-Ray Microtomography
18.
Drug Deliv ; 25(1): 241-255, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29334272

ABSTRACT

Diabetic wounds, one of the most enervating complications of diabetes mellitus, affect millions of people worldwide annually. Vascular insufficiency, caused by hyperglycemia, is one of the primary causes and categories of diabetic impaired wound healing. Recently, long noncoding RNA (LncRNA)-H19, which is significantly decreased in diabetes and may be crucial in triggering angiogenesis, has attracted increasing interest. The possible relationship between the decrease of LncRNA-H19 and the impairment of angiogenesis in diabetes could involve impairment of the insulin-phosphatidylinositol 3-kinase (PI3K)-Akt pathway via the interdiction of LncRNA-H19. Thus, a therapeutic strategy utilizing LncRNA-H19 delivery is feasible. In this study, we investigated the possibility of using high-yield extracellular vesicle-mimetic nanovesicles (EMNVs) as an effective nano-drug delivery system for LncRNA, and studied the function of EMNVs with a high content of LncRNA-H19 (H19EMNVs). The results, which were exciting, showed that H19EMNVs had a strong ability to neutralize the regeneration-inhibiting effect of hyperglycemia, and could remarkably accelerate the healing processes of chronic wounds. Our results suggest that bioengineered EMNVs can serve as a powerful instrument to effectively deliver LncRNA and will be an extremely promising multifunctional drug delivery system in the immediate future.


Subject(s)
Diabetes Complications/drug therapy , Diabetes Mellitus/drug therapy , Drug Carriers/chemistry , Extracellular Vesicles/metabolism , Nanoparticles/chemistry , RNA, Long Noncoding/administration & dosage , Wound Healing/drug effects , Cell Line , Diabetes Complications/metabolism , Diabetes Mellitus/metabolism , Drug Delivery Systems/methods , HEK293 Cells , Humans , Hyperglycemia/drug therapy , Hyperglycemia/metabolism , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Wounds and Injuries/drug therapy , Wounds and Injuries/metabolism
19.
Int J Biol Sci ; 13(11): 1398-1408, 2017.
Article in English | MEDLINE | ID: mdl-29209144

ABSTRACT

Osteosarcoma (OS), the commonest primary malignant tumour originating from bone, affects a substantial number of people, mostly during adolescent growth, and leads to a very poor prognosis as a result of the high rate of early metastases. Consequently, there is urgent demand for a novel treatment for this disease. There are growing concerns focused on OS-induced pro-angiogenic effects, but to date, the mechanism of OS-induced pro-angiogenesis is still insufficiently well-understood. Long noncoding RNAs (lncRNAs) have attracted increasing interest due to their strong correlation with a variety of diseases and their powerful capacity for epigenetic regulation. Recently, metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), a lncRNA, has been discovered to be closely related to OS progression and hypoxia responses which are associated with angiogenesis. In this study, we confirm that MALAT1 induces pro-angiogenic effects, and demonstrate that the underlying mechanism involves a MALAT1/mechanistic target of rapamycin (mTOR)/hypoxia inducible factor-1α (HIF-1α) loop. With the help of chemically-modified small interfering RNAs targeting MALAT1 (siMALAT1), we confirm that siMALAT could provide a potential strategy to block the abnormally active OS-induced pro-angiogenic effect, and ultimately successfully suppress progression of OS tumours.


Subject(s)
Osteosarcoma/metabolism , Osteosarcoma/pathology , RNA, Long Noncoding/physiology , Animals , Cell Line , Cell Line, Tumor , Cell Movement/genetics , Cell Movement/physiology , Enzyme-Linked Immunosorbent Assay , Humans , Mice , Mice, Nude , Neovascularization, Pathologic/genetics , Neovascularization, Pathologic/metabolism , Neovascularization, Pathologic/pathology , Osteosarcoma/genetics , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics
20.
Int J Biol Sci ; 13(7): 828-834, 2017.
Article in English | MEDLINE | ID: mdl-28808416

ABSTRACT

Extracellular vesicles (EVs) are a newly-discovered way by which cells communicate with their neighbors, as well as transporting cargos which once were considered to be limited by membrane barriers, including membrane proteins, cytosolic proteins and RNA. The discovery of platelet-derived EVs (P-EVs), the most abundant EVs in human blood, has been a very tortuous process. At first, P-EVs were identified as nothing but 'platelet dust', and subsequent research did not progress smoothly because of the limited research techniques to study EVs. Following leaps and bounds of technical progress in studying EVs, more and more attractive features of P-EVs were revealed and they began to be further researched. The aim of this review is to present the latest knowledge about the role of P-EVs in tissue repair and tumor progression. The potential mechanism of P-EVs is emphasized. Then the limitations of the present study and future research directions are discussed.


Subject(s)
Blood Platelets , Extracellular Vesicles/physiology , Humans , Neoplasms/therapy
SELECTION OF CITATIONS
SEARCH DETAIL
...