Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Total Environ ; 946: 174222, 2024 Oct 10.
Article in English | MEDLINE | ID: mdl-38945230

ABSTRACT

The presence of antibiotic resistance genes (ARGs), disinfectant resistance genes (DRGs), and pathogens in animal food processing environments (FAPE) poses a significant risk to human health. However, knowledge of the contamination and risk profiles of a typical commercial pig slaughterhouse with periodic disinfectant applications is limited. By creating the overall metagenomics-based behavior and risk profiles of ARGs, DRGs, and microbiomes in a nine-section pig slaughterhouse, an important FAPE in China. A total of 454 ARGs and 84 DRGs were detected in the slaughterhouse with resistance genes for aminoglycosides and quaternary ammonium compounds, respectively. The entire slaughtering chain is a hotspot for pathogens, including 83 human pathogenic bacteria (HPB), with 47 core HPB. In addition, 68 high-risk ARGs were significantly correlated with 55 HPB, 30 of which were recognized as potential bacteria co-resistant to antibiotics and disinfectants, confirm a three-fold risk of ARGs, DRGs, and pathogens prevailing throughout the chain. Pre-slaughter pig house (PSPH) was the major risk source for ARGs, DRGs, and HPB. Moreover, 75 Escherichia coli and 47 Proteus mirabilis isolates showed sensitivity to potassium monopersulfate and sodium hypochlorite, suggesting that slaughterhouses should use such related disinfectants. By using whole genome multi-locus sequence typing and single nucleotide polymorphism analyses, genetically closely related bacteria were identified across distinct slaughter sections, suggesting bacterial transmission across the slaughter chain. Overall, this study underscores the critical role of the PSPH section as a major source of HPB, ARGs, and DRGs contamination in commercial pig slaughterhouses. Moreover, it highlights the importance of addressing clonal transmission and cross-contamination of antibiotic- and disinfectant-resistant bacteria within and between slaughter sections. These issues are primarily attributed to the microbial load carried by animals before slaughter, carcass handling, and content exposure during visceral treatment. Our findings provide valuable insights for One Health-oriented slaughterhouse management practices.


Subject(s)
Abattoirs , Anti-Bacterial Agents , Disinfectants , Animals , Swine , China , Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Drug Resistance, Microbial/genetics , Bacteria/drug effects
2.
Ecotoxicol Environ Saf ; 255: 114805, 2023 Apr 15.
Article in English | MEDLINE | ID: mdl-36958264

ABSTRACT

Aflatoxin B1 (AFB1) is a commonly occurring toxicant in animal and human diets, leading to hazardous effects on health. AFB1 is known to be a hepato-toxicant, and the intestinal barrier may play a crucial role in reversing AFB1-induced liver injury. This study aimed to optimize the extraction conditions of Penthorum chinense Pursh Compound Flavonoids (PCPCF) by the response surface method with a Box-Behnken design and investigate the effects of PCPCF on AFB1-induced liver injury in broilers. A total of 164 one-day-old broilers were divided into seven groups, including Control, PCPCF (400 mg PCPCF/kg feed), AFB1 (3 mg AFB1/kg feed), and YCHT (Yin-Chen-Hao-Tang extract, 3 mg AFB1 +10 mL YCHT/kg feed) and low, medium, and high dose groups (PCPCF at 3 mg AFB1 +200, 400, 600 mg respectively). Samples of serum, liver, duodenum, and cecum contents were collected at 14th and 28th days for further analysis. The results showed that the maximum extraction rate of PCPCF was 8.15 %. PCPCF was rich in rutin, quercetin, liquiritin and kaempferol, and significantly inhibited the growth of Aspergillus flavus. The addition of PCPCF improved the growth performance of AFB1-injury broilers, modulated liver function, and increased serum immunoglobulin levels. PCPCF also alleviated liver pathological and oxidative stress damages caused by AFB1 and decreased AFB1-DNA and AFB1-lysine content in the liver. Furthermore, PCPCF supplementation ameliorated intestinal pathological damage, improved intestinal permeability of duodenum in the AFB1-induced broilers, and repaired the intestinal mucosal and mechanical barrier associated with the Notch signaling pathway. Meanwhile, PCPCF improved the intestinal flora structure of AFB1-damaged broilers and increased the abundance of beneficial bacteria. In conclusion, PCPCF ameliorated the adverse effects of AFB1 on growth performance and alleviated liver damage by repairing the intestinal barrier and improving intestinal health of broiler chicken.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Gastrointestinal Microbiome , Humans , Animals , Aflatoxin B1/toxicity , Aflatoxin B1/analysis , Chickens , Flavonoids/pharmacology , Dietary Supplements/analysis , Animal Feed/analysis
3.
Biomed Res Int ; 2023: 4254051, 2023.
Article in English | MEDLINE | ID: mdl-36852294

ABSTRACT

Traditional Chinese medicines (TCM) play an important role in the control and treatment of several animal diseases. Penthorum chinense Pursh (PCP) is a famous plant for its use in traditional medication practice and therapeutic effects in numerous pathological conditions. In China, PCP is utilized for both food and medication due to numerous bioactivities. PCP is widely administered in prevention and treatment of traumatic injury, edema, and liver diseases with functions of reducing swelling, support diuresis, blood stasis, and mitigation symptoms of excessive alcohol intake. Recently, PCP highlighted for research trials in various fields including pharmacology, pharmacognosy, cosmeceuticals, nutraceuticals, and pharmaceuticals due to medicinal significance with less toxicity and an effective ethnomedicine in veterinary practice. PCP contains diverse important ingredients such as flavonoids, organic acids, coumarins, lignans, polyphenols, and sterols that are important bioactive constituents of PCP exerting the therapeutic benefits and organ-protecting effects. In veterinary, PCP extract, compound, and phytochemicals/biomolecules significantly reversed the liver and kidney injuries, via antioxidation, oxidative stress, apoptosis, mitochondrial signaling pathways, and related genes. PCP water extract and compounds also proved in animal and humans' clinical trial for their hepatoprotective, antiaging, nephroprotective, anti-inflammatory, antidiabetic, antibacterial, antiapoptotic, immune regulation, and antioxidative stress pathways. This updated review spotlighted the current information on efficiency and application of PCP by compiling and reviewing recent publications on animal research. In addition, this review discussed the toxicology, traditional use, comparative, and clinical application of PCP in veterinary practices to authenticate and find out new perspectives on the research and development of this herbal medicine.


Subject(s)
Animal Diseases , Animals , Humans , Anti-Bacterial Agents , Antioxidants/pharmacology , Apoptosis , Dietary Supplements
4.
Animals (Basel) ; 12(5)2022 Feb 24.
Article in English | MEDLINE | ID: mdl-35268138

ABSTRACT

Acute liver injury (ALI), manifested by acute hepatocellular damages and necrosis, is a life-threatening clinical syndrome and Penthorum Chinense Pursh (PCP) is a well-known folk medicine practiced for liver-related diseases. This study aimed to investigate the ameliorative effects of PCP extract (PCPE) on carbon tetrachloride (CCl4) induced ALI in dogs via mitogen-activated protein kinase (MAPK) and Nuclear factor κB (NF-κB) signaling pathway. Healthy dogs were induced by CCl4 and treated with different dosage regimes of PCPE for 7 days. CCl4 produced acute liver injury and induced both oxidative stress and an inflammatory response in dogs. The PCPE significantly ameliorated and improved vacuolar inflammatory lesions in liver tissues during ALI, enhanced activity of superoxide dismutase, and restored glutathione peroxidase, further significantly reducing the indices of malondialdehyde and nitric oxide in serum. Inflammatory factors (IL-1ß, IL-6, and TNF-α) were declined and anti-inflammatory factors (IL-10) were increased by the application of PCPE. PCPE treatment, down-regulated the MEKK4, MKK3, p38MAPK, MSK1, and NF-κB, and upregulated the IkB mRNA levels (p < 0.01) in ALI affected dogs. In conclusion, PCPE repaired acute liver injury by improving antioxidant enzymes and by reducing oxidation products. Furthermore, the PCPE inhibited the MAPK/NF-κB signaling pathway, which resulted in anti-inflammatory and antioxidant effects on ALI-induced dogs. In the future, PCPE could be a useful ethnomedicine in veterinary clinical practices for the treatment of liver injuries or failures.

5.
Front Vet Sci ; 9: 822259, 2022.
Article in English | MEDLINE | ID: mdl-35187148

ABSTRACT

Aflatoxin is an important toxicant of the fungal origin and poses a threat to the poultry industry. This study was designed to reveal the underlying mechanism and protective methods against aflatoxin B1 (AFB1)-induced liver injury, oxidative stress, and apoptosis using a Traditional Chinese medicine, Penthorum chinense Pursh extract (PCPE), in broilers. A total of 164 (day-old) broilers were equally allocated to the control, AFB1 (3 mg/kg feed), positive drug (Yin-Chen-Hao Tang extract, 10 ml/kg feed), PCPE (2 g PCPE/kg), and PCPE low, medium, and high dose groups (1 g, 2 g, 3 g PCPE/kg feed, respectively). AFB1 significantly decreased the growth performance and serum immunoglobulin level, altered normal serum biochemical parameters and antioxidant activities, and induced histopathological lesions in the liver as compared to control group. Additionally, AFB1 significantly up-regulated the mRNA expression levels of apoptosis-related genes such as Bax, Bak, caspase-9, caspase-3, and p53, whereas it down-regulated the expression levels of BCL2 in the liver of broilers. The supplementation of different doses of PCPE to AFB1-affected birds significantly eased AFB1 negative effects by improving growth performance, immunoglobulin level, and oxidative capacity, and reversed oxidative stress and pathological lesions in liver. Furthermore, supplementation of PCPE to the AFB1 group reversed apoptosis by significantly down-regulating the mRNA expression levels of Bax, Bak, caspase-9, caspase-3, and p53 and up-regulating the expression levels of BCL2 in the liver of broilers. Based on these results, we conclude that supplementation of PCPE is protective and safe against oxidative stress, is anti-apoptotic, and reverses the liver damage caused by AFB1 in broilers.

6.
Front Vet Sci ; 8: 750937, 2021.
Article in English | MEDLINE | ID: mdl-34692815

ABSTRACT

Aflatoxin B1 (AFB1) is a carcinogenic mycotoxin widely present in foods and animal feeds; it represents a great risk to human and animal health. The aim of this study was to investigate the protective effects of Penthorum chinense Pursh compound (PCPC) against AFB1-induced damage, oxidative stress, and apoptosis via mitochondrial pathways in kidney tissues of broilers. One-day-old chickens (n = 180) were randomly allocated to six groups: control, AFB1 (2.8 mg AFB1/kg feed), positive drug (10 mLYCHT/kg feed), and PCPC high, medium, and low-dose groups (15, 10, and 5 ml PCPC/kg feed, respectively). AFB1 treatment reduced weight gain and induced oxidative stress and kidney damage in broiler tissues; however, PCPC supplementation effectively enhanced broiler performance, ameliorated AFB1-induced oxidative stress, and inhibited apoptosis in the kidneys of broilers. The mRNA expression levels of mitochondria-related apoptosis genes (Bax, Bak, cytochrome c, caspase-9, and caspase-3) were significantly increased, whereas BCL2 expression level decreased in the AFB1 group. Supplementation of PCPC to the AFB1 group significantly reversed the changes in mRNA expression levels of these apoptosis-associated genes compared to those in the AFB1 group. The mRNA levels of NRF2 and HMOX1 in the kidneys of the AFB1 group were significantly reduced compared to those in the control group, whereas PCPC significantly increased the NRF2 and HMOX1 mRNA levels. AFB1 decreased the levels of Beclin1, LC3-I, and LC3-II and increased P53 levels in the kidney compared to those in the control, whereas PCPC significantly reversed these changes to normal levels of autophagy-related genes compared to those in the AFB1 group. In conclusion, our findings demonstrated that PCPC ameliorated AFB1-induced oxidative stress by regulating the expression of apoptosis-related genes and mitochondrial pathways. Our results suggest that PCPC represents a natural and safe agent for preventing AFB1-induced injury and damage in broiler tissues.

SELECTION OF CITATIONS
SEARCH DETAIL