Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Org Lett ; 26(19): 4071-4076, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38696713

ABSTRACT

An electrochemical oxidative difunctionalization of diazo compounds with diselenides and nucleophiles has been developed. This innovative approach yields a diverse array of selenium-containing pyrazole esters and alkoxy esters, overcoming the limitations of traditional synthesis methods. Remarkably, various nucleophiles, including acids, alcohols, and pyrazoles, can be seamlessly incorporated. Notably, this protocol boasts high atom efficiency, excellent functional group tolerance, and good efficiency and operates under transition metal- and oxidant-free conditions, distinguishing it in the field.

2.
Angew Chem Int Ed Engl ; 61(40): e202208768, 2022 Oct 04.
Article in English | MEDLINE | ID: mdl-35856409

ABSTRACT

The rapid development of information technology has resulted in a growing demand for low-dimensional photonic materials. Organic semiconductor materials play an important role in various photonic devices due to their adjustable physicochemical properties, while individual organic crystals do not exhibit the desired performance due to the limitations of their simple structure. Branched organic crystals with inherent multichannel characteristics based on π-conjugated molecules are favorable components in optoelectronics. However, the preparation of branched organic crystals still faces great challenges before they can be applied in integrated optoelectronic devices. In this Review, the development and representative examples of branched organic crystals in terms of molecular design, synthesis, and advanced applications are discussed. We also provide a summary and outlook for the direction of future research on branched organic crystals as excellent candidates in photonic integrated circuits.

3.
Adv Mater ; 33(40): e2102719, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34414610

ABSTRACT

White-light-emissive organic micro/nanostructures hold exotic potential applications in full-color displays, on-chip wavelength-division multiplexing, and backlights of portable display devices, but are rarely realized in organic core/shell heterostructures. Herein, through regulating the noncovalent interactions between organic semiconductor molecules, a hierarchical self-assembly approach of horizontal epitaxial-growth is demonstrated for the fine synthesis of organic core/mono-shell microwires with multicolor emission (red-green, red-blue, and green-blue) and especially organic core/double-shell microwires with radial red-green-blue (RGB) emission, whose components are dibenzo[g,p]chrysene (DgpC)-based charge-transfer (CT) complexes. In fact, the desired lattice mismatching (≈2%) and the excellent structure compatibility of these CT complexes facilitate the epitaxial-growth process for the facile synthesis of organic core/shell microwires. With the RGB-emissive substructures, these core/double-shell organic microwires are microscale white-light sources (CIE [0.34, 0.36]). Besides, the white-emissive core/double-shell microwires demonstrate the fascinating full-spectrum light transportation from 400 to 700 nm. This work indeed opens up a novel avenue for the accurate construction of organic core/shell heterostructures, which provides an attractive platform for the organic integrated optoelectronics.

4.
J Phys Chem Lett ; 11(18): 7517-7524, 2020 Sep 17.
Article in English | MEDLINE | ID: mdl-32813531

ABSTRACT

The rational design and the fine synthesis of organic heterostructures (OHSs) are the key steps toward integrated organic optoelectronics. Herein we have demonstrated a self-assembly approach of combining a molecular-level heterostructure with a structural-level heterostructure and regulating the noncovalent intermolecular interactions for the precise construction of OHSs: a vertical type of anthracene-TCNB heterostructure and a horizontal type of benzopyrene-TCNB heterostructure. The excellent structural compatibility and the low lattice mismatch rate of ∼5.8% between single-component microplates and cocrystal microwires allow anthracene and benzopyrene molecules to grow epitaxially on the cocrystal. Significantly, integrating the multicolor emission and the distinctive dimensional-dependent photon transportation properties of low-dimensional micro/nanostructures, the multicolor optical outputs are achieved via modulating the active/passive optical waveguides in OHSs. Our work exhibits the utilization of the multilevel heterostructure strategy, which boosts the rational design of OHSs for organic photonics.

5.
Nat Commun ; 10(1): 3839, 2019 Aug 26.
Article in English | MEDLINE | ID: mdl-31451699

ABSTRACT

Organic heterostructures (OHSs) integrating the intrinsic heterostructure characters as well as the organic semiconductor properties have attracted intensive attention in material chemistry. However, the precise bottom-up synthesis of OHSs is still challenging owing to the general occurrence of homogeneous-nucleation and the difficult manipulation of noncovalent interactions. Herein, we present the rational synthesis of the longitudinally/horizontally-epitaxial growth of one-dimensional OHSs including triblock and core/shell nanowires with quantitatively-manipulated microstructure via a hierarchical self-assembly method by regulating the noncovalent interactions: hydrogen bond (-15.66 kcal mol-1) > halogen bond (-4.90 kcal mol-1) > π-π interaction (-0.09 kcal mol-1). In the facet-selective epitaxial growth strategy, the lattice-matching and the surface-interface energy balance respectively facilitate the realization of triblock and core/shell heterostructures. This hierarchical self-assembly approach opens up avenues to the fine synthesis of OHSs. We foresee application possibilities in integrated optoelectronics, such as the nanoscale multiple input/out optical logic gate with high-fidelity signal.

6.
J Phys Chem Lett ; 10(3): 679-684, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30682884

ABSTRACT

Solid-state lasers (SSLs) play an important role in developing optoelectronic devices, optical communication, and modern medicine fields. As compared with inorganic SSLs, the electrically pumped organic SSLs (OSSLs) still remain unrealized because of the high lasing threshold and low carrier mobility. Herein, we first demonstrate the laser action at ∼520 nm based on the self-assembled single-crystalline organic microribbons of the aggregation-induced emission (AIE) molecules of 1,4-bis(( E)-4-(1,2,2-triphenylvinyl)styryl)-2,5-dimethoxybenzene (TPDSB). Moreover, these as-prepared organic microribbons exhibit an effective optical waveguide with a low optical loss of 0.012 dB µm-1, indicating good light confinement for laser resonator feedback. Impressively, the multiple mode and the single mode lasing are both achieved from individual organic microribbons, whose lasing threshold is as low as 653 nJ cm-2. These "bottom-up" synthesized organic microribbons based on AIE-active molecules offer a new strategy for the realization of the ultralow threshold OSSLs, which would eventually contribute to the realization of electrically pumped OSSLs.

7.
ACS Appl Mater Interfaces ; 11(5): 5298-5305, 2019 Feb 06.
Article in English | MEDLINE | ID: mdl-30640427

ABSTRACT

The core/shell micro-/nanostructures with versatility, tunability, stability, dispersibility, and biocompatibility are widely applied in optics, biomedicine, catalysis, and energy. Organic micro-/nanocrystals have significant applications in miniaturized optoelectronics because of their controllable self-assembly behavior, tunable optical properties, and tailor-made molecular structure. Nevertheless, the advanced organic core/shell micro-/nanostructures, which possess multifunctionality, flexibility, and higher compatibility, are rarely demonstrated because of the dynamic nature of molecular self-assembly and the complex epitaxial relationship of material combination. Herein, we demonstrate the one-dimensional organic core/shell micro-/nanostructures with component interchange, which originates from the 4,4'-((1 E,1' E)-(2,5-dimethoxy-1,4-phenylene)bis(ethene-2,1-diyl))dipyridine (DPEpe) single-crystal microrods or the DPEpe-HCl single-crystal microrods after a reversible protonation or deprotonation process. Notably, the DPEpe/DPEpe-HCl core/shell microrods display vivid visualizations of tunable emission color via an efficient energy-transfer process during the stepwise formation of a shell layer. More significantly, these DPEpe/DPEpe-HCl and DPEpe-HCl/DPEpe core/shell microrods cooperatively demonstrate the multicolor optical waveguide properties continuously adjusted from green [CIE (0.326, 0.570)], to yellow [CIE (0.516, 0.465)], and to red [CIE (0.614, 0.374)]. Our investigation provides a new strategy to fabricate the organic core/shell micro-/nanostructures, which can eventually contribute to the advanced organic optoelectronics at the micro-/nanoscale.

8.
Angew Chem Int Ed Engl ; 57(35): 11300-11304, 2018 Aug 27.
Article in English | MEDLINE | ID: mdl-30117234

ABSTRACT

Anisotropic organic molecular construction and packing are crucial for the optoelectronic properties of organic crystals. Two-dimensional (2D) organic crystals with regular morphology and good photon confinement are potentially suitable for a chip-scale planar photonics system. Herein, through the bottom-up process, 2D halogen-bonded DPEpe-F4 DIB cocrystals were fabricated that exhibit an asymmetric optical waveguide with the optical-loss coefficients of RBackward =0.0346 dB µm-1 and RForward =0.0894 dB µm-1 along the [010] crystal direction, which can be attributed to the unidirectional total internal reflection caused by the anisotropic molecular packing mode. Based on this crystal direction-oriented asymmetric photon transport, these as-prepared 2D cocrystals have been demonstrated as a microscale optical logic gate with multiple input/out channels, which will offer potential applications as the 2D optical component for the integrated organic photonics.

9.
Chem Commun (Camb) ; 54(46): 5895-5898, 2018 Jun 05.
Article in English | MEDLINE | ID: mdl-29789844

ABSTRACT

Organic molecules of DIDB can inherently assemble into fluorescent green-emissive microwires with a low photoluminescence quantum efficiency (PLQY) of 1.0%. Impressively, by doping DIDB into the nonluminous 4-iodobenzonitrile crystal matrix with a molar ratio of 1 : 100, phosphorescent yellow-emissive microwires with a much higher PLQY of 50.5% are obtained.

SELECTION OF CITATIONS
SEARCH DETAIL
...