Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 250: 121060, 2024 Feb 15.
Article in English | MEDLINE | ID: mdl-38181646

ABSTRACT

Permeable Reactive Barriers (PRBs) have been utilized for mitigating nitrate pollution in groundwater systems through the use of solid carbon and iron fillers that release diverse nutrients to enhance denitrification efficiency. We conduct laboratory column tests to evaluate the effectiveness of PRBs in remediating nitrate pollution both within the PRB and in the downgradient aquifer. We use an iron-carbon hydrogel (ICH) as PRB filler, which has different weight ratios of polyhydroxybutyrate (PHB) and microscale zero-valent iron (mZVI). Results reveal that denitrification in the downgradient aquifer accounts for at least 19.5 % to 32.5 % of the total nitrate removal. In the ICH, a higher ratio of PHB to mZVI leads to higher contribution of the downgradient aquifer to nitrate removal, while a lower ratio results in smaller contribution. Microbial community analysis further reveals that heterotrophic and mixotrophic bacteria dominate in the downgradient aquifer of the PRB, and their relative abundance increases with a higher ratio of PHB to mZVI in the ICH. Within the PRB, autotrophic and iron-reducing bacteria are more prevalent, and their abundance increases as the ratio of PHB to mZVI in the ICH decreases. These findings emphasize the downgradient aquifer's substantial role in nitrate removal, particularly driven by dissolved organic carbon provided by PHB. This research holds significant implications for nutrient waste management, including the prevention of secondary pollution, and the development of cost-effective PRBs.


Subject(s)
Groundwater , Water Pollutants, Chemical , Nitrates/analysis , Iron/analysis , Polyhydroxybutyrates , Water Pollutants, Chemical/analysis , Carbon , Biodegradation, Environmental
2.
Environ Sci Technol ; 55(22): 15013-15024, 2021 11 16.
Article in English | MEDLINE | ID: mdl-34714051

ABSTRACT

Large-scale carbon capture, utilization, and storage (CCUS) requires development of critical infrastructure to connect capture locations to geological storage sites. Here, we investigate what government policies would be required to make the development of CO2 pipelines and large-scale CCUS in the power sector economically viable. We focus on the transition from conventional coal to non-CO2-emitting natural gas-fired Allam-cycle power with CCUS and study a system in which 156 Allam-cycle power generators representing 100 GW of capacity send their captured CO2 emissions to three geological storage locations in the central United States through 7500 miles of new pipeline. Enabling policies for this system include low-interest government loans of approximately $20 billion for pipeline construction and an extended 20-year Section 45Q tax credit, or similar longer-term carbon price incentive. Additional policy support will be needed to enable initial construction of pipelines and early-mover power generators, such as cost-sharing, governments assuming future demand risk, or increased subsidies to early movers. The proposed system will provide reliable, dispatchable, flexible zero-emission power generation, complementing the intermittent generation by renewables in a decarbonized U.S. power sector. The proposed pipeline network could also connect into future regional infrastructure networks and facilitate large-scale carbon management.


Subject(s)
Carbon Dioxide , Coal , Carbon Dioxide/analysis , Geology , Natural Gas , Policy , Power Plants , United States
SELECTION OF CITATIONS
SEARCH DETAIL
...