Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
Trends Plant Sci ; 2024 Jul 09.
Article in English | MEDLINE | ID: mdl-38987059

ABSTRACT

Cultivated tomatoes exhibit cleistogamy - self-pollination within closed flowers. Wu et al. report that three HD-Zip IV genes and Style2.1 coordinately control anther trichome formation and style length to form closed anther cones that underpin the development of cleistogamy. Further exploration of causal variation and regulatory elements could provide targets for plant breeding.

2.
Imeta ; 3(2): e193, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38882488

ABSTRACT

The assembly of two sorghum T2T genomes corrected the assembly errors in the current reference, uncovered centromere variation, boosted functional genomics research, and accelerated sorghum improvement.

3.
Plants (Basel) ; 13(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337903

ABSTRACT

As one of the essential nutrients for plants, nitrogen (N) has a major impact on the yield and quality of wheat worldwide. Due to chemical fertilizer pollution, it has become increasingly important to improve crop yield by increasing N use efficiency (NUE). Therefore, understanding the response mechanisms to low N (LN) stress is essential for the regulation of NUE in wheat. In this study, LN stress significantly accelerated wheat root growth, but inhibited shoot growth. Further transcriptome analysis showed that 8468 differentially expressed genes (DEGs) responded to LN stress. The roots and shoots displayed opposite response patterns, of which the majority of DEGs in roots were up-regulated (66.15%; 2955/4467), but the majority of DEGs in shoots were down-regulated (71.62%; 3274/4565). GO and KEGG analyses showed that nitrate reductase activity, nitrate assimilation, and N metabolism were significantly enriched in both the roots and shoots. Transcription factor (TF) and protein kinase analysis showed that genes such as MYB-related (38/38 genes) may function in a tissue-specific manner to respond to LN stress. Moreover, 20 out of 107 N signaling homologous genes were differentially expressed in wheat. A total of 47 transcriptome datasets were used for weighted gene co-expression network analysis (17,840 genes), and five TFs were identified as the potential hub regulatory genes involved in the response to LN stress in wheat. Our findings provide insight into the functional mechanisms in response to LN stress and five candidate regulatory genes in wheat. These results will provide a basis for further research on promoting NUE in wheat.

4.
Theor Appl Genet ; 136(10): 209, 2023 Sep 16.
Article in English | MEDLINE | ID: mdl-37715848

ABSTRACT

KEY MESSAGE: This study quantified genetic variation in root system architecture (root number, angle, length and dry mass) within a diversity panel of 1771 Ethiopian sorghum landraces and identified 22 genomic regions associated with the root variations. The root system architecture (RSA) of crop plants influences adaptation to water-limited conditions and determines the capacity of a plant to access soil water and nutrients. Four key root traits (number, angle, length and dry mass) were evaluated in a diversity panel of 1771 Ethiopian sorghum landraces using purpose-built root chambers. Significant genetic variation was observed in all studied root traits, with nodal root angle ranging from 16.4° to 26.6°, with a high repeatability of 78.9%. Genome wide association studies identified a total of 22 genomic regions associated with root traits which were distributed on all chromosomes except chromosome SBI-10. Among the 22 root genomic regions, 15 co-located with RSA trait QTL previously identified in sorghum, with the remaining seven representing novel RSA QTL. The majority (85.7%) of identified root angle QTL also co-localized with QTL previously identified for stay-green in sorghum. This suggests that the stay-green phenotype might be associated with root architecture that enhances water extraction during water stress conditions. The results open avenues for manipulating root phenotypes to improve productivity in abiotic stress environments via marker-assisted selection.


Subject(s)
Genome-Wide Association Study , Sorghum , Sorghum/genetics , Edible Grain , Genomics , Nutrients
5.
Trends Plant Sci ; 28(11): 1211-1213, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37580225

ABSTRACT

Alkalinity constrains crop production. Recently, Zhang et al. reported a negative regulator, Alkaline Tolerance 1 (AT1), attenuating phosphorylation of plasma membrane intrinsic protein (PIP2) to block efflux of intracellular reactive oxygen species (ROS) under alkaline stress and boosting yield of cereal crops by 20-30%. However, further efforts are needed to exploit the application of AT1 in breeding alkaline-tolerant crops.

6.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Article in English | MEDLINE | ID: mdl-36782130

ABSTRACT

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Subject(s)
Genome, Mitochondrial , Sorghum , Genome, Mitochondrial/genetics , Sorghum/genetics , Phylogeny , Domestication , Plants/genetics , Cell Nucleus , Evolution, Molecular , Genome, Plant/genetics
7.
Theor Appl Genet ; 135(9): 3057-3071, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35933636

ABSTRACT

KEY MESSAGE: Leaf width was correlated with plant-level transpiration efficiency and associated with 19 QTL in sorghum, suggesting it could be a surrogate for transpiration efficiency in large breeding program. Enhancing plant transpiration efficiency (TE) by reducing transpiration without compromising photosynthesis and yield is a desirable selection target in crop improvement programs. While narrow individual leaf width has been correlated with greater intrinsic water use efficiency in C4 species, the extent to which this translates to greater plant TE has not been investigated. The aims of this study were to evaluate the correlation of leaf width with TE at the whole-plant scale and investigate the genetic control of leaf width in sorghum. Two lysimetry experiments using 16 genotypes varying for stomatal conductance and three field trials using a large sorghum diversity panel (n = 701 lines) were conducted. Negative associations of leaf width with plant TE were found in the lysimetry experiments, suggesting narrow leaves may result in reduced plant transpiration without trade-offs in biomass accumulation. A wide range in width of the largest leaf was found in the sorghum diversity panel with consistent ranking among sorghum races, suggesting that environmental adaptation may have a role in modifying leaf width. Nineteen QTL were identified by genome-wide association studies on leaf width adjusted for flowering time. The QTL identified showed high levels of correspondence with those in maize and rice, suggesting similarities in the genetic control of leaf width across cereals. Three a priori candidate genes for leaf width, previously found to regulate dorsoventrality, were identified based on a 1-cM threshold. This study provides useful physiological and genetic insights for potential manipulation of leaf width to improve plant adaptation to diverse environments.


Subject(s)
Sorghum , Edible Grain/genetics , Genome-Wide Association Study , Plant Breeding , Plant Leaves/genetics , Plant Transpiration/genetics , Sorghum/genetics , Water/physiology
8.
J Exp Bot ; 73(3): 801-816, 2022 01 27.
Article in English | MEDLINE | ID: mdl-34698817

ABSTRACT

Developing sorghum genotypes adapted to different light environments requires understanding of a plant's ability to capture light, determined through leaf angle specifically. This study dissected the genetic basis of leaf angle in 3 year field trials at two sites, using a sorghum diversity panel (729 accessions). A wide range of variation in leaf angle with medium heritability was observed. Leaf angle explained 36% variation in canopy light extinction coefficient, highlighting the extent to which variation in leaf angle influences light interception at the whole-canopy level. This study also found that the sorghum races of Guinea and Durra consistently having the largest and smallest leaf angle, respectively, highlighting the potential role of leaf angle in adaptation to distinct environments. The genome-wide association study detected 33 quantitative trait loci (QTLs) associated with leaf angle. Strong synteny was observed with previously detected leaf angle QTLs in maize (70%) and rice (40%) within 10 cM, among which the overlap was significantly enriched according to χ2 tests, suggesting a highly consistent genetic control in grasses. A priori leaf angle candidate genes identified in maize and rice were found to be enriched within a 1-cM window around the sorghum leaf angle QTLs. Additionally, protein domain analysis identified the WD40 protein domain as being enriched within a 1-cM window around the QTLs. These outcomes show that there is sufficient heritability and natural variation in the angle of upper leaves in sorghum which may be exploited to change light interception and optimize crop canopies for different contexts.


Subject(s)
Sorghum , Edible Grain/genetics , Genome-Wide Association Study , Plant Leaves/genetics , Quantitative Trait Loci/genetics , Sorghum/genetics
9.
Plant J ; 108(1): 231-243, 2021 10.
Article in English | MEDLINE | ID: mdl-34309934

ABSTRACT

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Subject(s)
Quantitative Trait Loci/genetics , Sorghum/genetics , Crops, Agricultural , Edible Grain/genetics , Edible Grain/growth & development , Genome-Wide Association Study , Genotype , Haplotypes , Phenotype , Seeds/genetics , Seeds/growth & development , Sorghum/growth & development
10.
Nat Plants ; 7(6): 766-773, 2021 06.
Article in English | MEDLINE | ID: mdl-34017083

ABSTRACT

Sorghum is a drought-tolerant staple crop for half a billion people in Africa and Asia, an important source of animal feed throughout the world and a biofuel feedstock of growing importance. Cultivated sorghum and its inter-fertile wild relatives constitute the primary gene pool for sorghum. Understanding and characterizing the diversity within this valuable resource is fundamental for its effective utilization in crop improvement. Here, we report analysis of a sorghum pan-genome to explore genetic diversity within the sorghum primary gene pool. We assembled 13 genomes representing cultivated sorghum and its wild relatives, and integrated them with 3 other published genomes to generate a pan-genome of 44,079 gene families with 222.6 Mb of new sequence identified. The pan-genome displays substantial gene-content variation, with 64% of gene families showing presence/absence variation among genomes. Comparisons between core genes and dispensable genes suggest that dispensable genes are important for sorghum adaptation. Extensive genetic variation was uncovered within the pan-genome, and the distribution of these variations was influenced by variation of recombination rate and transposable element content across the genome. We identified presence/absence variants that were under selection during sorghum domestication and improvement, and demonstrated that such variation had important phenotypic outcomes that could contribute to crop improvement. The constructed sorghum pan-genome represents an important resource for sorghum improvement and gene discovery.


Subject(s)
Crops, Agricultural/genetics , Genetic Variation , Genome, Plant , Plant Proteins/genetics , Sorghum/genetics , Domestication , Genome Size , Multigene Family , Phylogeny , Pigmentation/genetics , Polymorphism, Single Nucleotide , Seeds/genetics
11.
Mol Plant ; 13(9): 1247-1249, 2020 09 07.
Article in English | MEDLINE | ID: mdl-32745560

Subject(s)
Genome , Glycine max , Genomics
12.
Theor Appl Genet ; 133(11): 3201-3215, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32833037

ABSTRACT

KEY MESSAGE: We detected 213 lodging QTLs and demonstrated that drought-induced stem lodging in grain sorghum is substantially associated with stay-green and plant height suggesting a critical role of carbon remobilisation. Sorghum is generally grown in water limited conditions and often lodges under post-anthesis drought, which reduces yield and quality. Due to its complexity, our understanding on the genetic control of lodging is very limited. We dissected the genetic architecture of lodging in grain sorghum through genome-wide association study (GWAS) on 2308 unique hybrids grown in 17 Australian sorghum trials over 3 years. The GWAS detected 213 QTLs, the majority of which showed a significant association with leaf senescence and plant height (72% and 71%, respectively). Only 16 lodging QTLs were not associated with either leaf senescence or plant height. The high incidence of multi-trait association for the lodging QTLs indicates that lodging in grain sorghum is mainly associated with plant height and traits linked to carbohydrate remobilisation. This result supported the selection for stay-green (delayed leaf senescence) to reduce lodging susceptibility, rather than selection for short stature and lodging resistance per se, which likely reduces yield. Additionally, our data suggested a protective effect of stay-green on weakening the association between lodging susceptibility and plant height. Our study also showed that lodging resistance might be improved by selection for stem composition but was unlikely to be improved by selection for classical resistance to stalk rots.


Subject(s)
Carbon/metabolism , Droughts , Quantitative Trait Loci , Sorghum/growth & development , Sorghum/genetics , Australia , Carbohydrate Metabolism , Genetic Association Studies , Haplotypes , Phenotype , Plant Stems/growth & development
13.
Genes (Basel) ; 11(7)2020 07 16.
Article in English | MEDLINE | ID: mdl-32708598

ABSTRACT

C4 photosynthesis has evolved in over 60 different plant taxa and is an excellent example of convergent evolution. Plants using the C4 photosynthetic pathway have an efficiency advantage, particularly in hot and dry environments. They account for 23% of global primary production and include some of our most productive cereals. While previous genetic studies comparing phylogenetically related C3 and C4 species have elucidated the genetic diversity underpinning the C4 photosynthetic pathway, no previous studies have described the genetic diversity of the genes involved in this pathway within a C4 crop species. Enhanced understanding of the allelic diversity and selection signatures of genes in this pathway may present opportunities to improve photosynthetic efficiency, and ultimately yield, by exploiting natural variation. Here, we present the first genetic diversity survey of 8 known C4 gene families in an important C4 crop, Sorghum bicolor (L.) Moench, using sequence data of 48 genotypes covering wild and domesticated sorghum accessions. Average nucleotide diversity of C4 gene families varied more than 20-fold from the NADP-malate dehydrogenase (MDH) gene family (θπ = 0.2 × 10-3) to the pyruvate orthophosphate dikinase (PPDK) gene family (θπ = 5.21 × 10-3). Genetic diversity of C4 genes was reduced by 22.43% in cultivated sorghum compared to wild and weedy sorghum, indicating that the group of wild and weedy sorghum may constitute an untapped reservoir for alleles related to the C4 photosynthetic pathway. A SNP-level analysis identified purifying selection signals on C4 PPDK and carbonic anhydrase (CA) genes, and balancing selection signals on C4 PPDK-regulatory protein (RP) and phosphoenolpyruvate carboxylase (PEPC) genes. Allelic distribution of these C4 genes was consistent with selection signals detected. A better understanding of the genetic diversity of C4 pathway in sorghum paves the way for mining the natural allelic variation for the improvement of photosynthesis.


Subject(s)
Genetic Variation , Metabolic Networks and Pathways/genetics , Photosynthesis/genetics , Sorghum/genetics , Domestication , Gene Expression Regulation, Plant , Genes, Plant , Genome, Plant , Malate Dehydrogenase (NADP+)/genetics , Malate Dehydrogenase (NADP+)/metabolism , Multigene Family/genetics , Phosphoenolpyruvate Carboxylase/genetics , Phosphoenolpyruvate Carboxylase/metabolism , Polymorphism, Single Nucleotide , Pyruvate, Orthophosphate Dikinase/genetics , Pyruvate, Orthophosphate Dikinase/metabolism , Sorghum/classification
14.
Nat Commun ; 11(1): 495, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31980630

ABSTRACT

Maize rough dwarf disease (MRDD), caused by various species of the genus Fijivirus, threatens maize production worldwide. We previously identified a quantitative locus qMrdd1 conferring recessive resistance to one causal species, rice black-streaked dwarf virus (RBSDV). Here, we show that Rab GDP dissociation inhibitor alpha (RabGDIα) is the host susceptibility factor for RBSDV. The viral P7-1 protein binds tightly to the exon-10 and C-terminal regions of RabGDIα to recruit it for viral infection. Insertion of a helitron transposon into RabGDIα intron 10 creates alternative splicing to replace the wild-type exon 10 with a helitron-derived exon 10. The resultant splicing variant RabGDIα-hel has difficulty being recruited by P7-1, thus leading to quantitative recessive resistance to MRDD. All naturally occurring resistance alleles may have arisen from a recent single helitron insertion event. These resistance alleles are valuable to improve maize resistance to MRDD and potentially to engineer RBSDV resistance in other crops.


Subject(s)
Disease Resistance , Guanine Nucleotide Dissociation Inhibitors/metabolism , Plant Diseases/virology , Plant Proteins/metabolism , Plant Viruses/physiology , Zea mays/virology , Alleles , Disease Resistance/genetics , Gene Expression Regulation, Plant , Genes, Plant , Guanine Nucleotide Dissociation Inhibitors/genetics , Models, Biological , Physical Chromosome Mapping , Plant Diseases/genetics , Plant Proteins/genetics , Plants, Genetically Modified , Protein Binding , Quantitative Trait Loci/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Reproducibility of Results , Viral Proteins/metabolism , Zea mays/genetics , Zea mays/ultrastructure
15.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Article in English | MEDLINE | ID: mdl-31659829

ABSTRACT

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Subject(s)
Genetic Association Studies , Seeds/growth & development , Sorghum/genetics , Phenotype , Quantitative Trait Loci , Sorghum/growth & development
16.
Phytopathology ; 110(4): 881-891, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31855502

ABSTRACT

Net form net blotch (NFNB), caused by the fungal pathogen Pyrenophora teres f. teres, is an important foliar disease present in all barley-producing regions of the world. This fungus is a hemibiotrophic and heterothallic ascomycete, where sexual recombination can lead to changes in disease expression in the host. Knowledge of the genetic architecture and genes involved in virulence is vital to increase the durability of NFNB resistance in barley cultivars. We used a genome-wide association mapping approach to characterize P. teres f. teres genomic regions associated with virulence in Australian barley cultivars. One hundred eighty-eight P. teres f. teres isolates collected across five Australian states were genotyped using Diversity Arrays Technology sequence markers and phenotyped across 20 different barley genotypes. Association mapping identified 14 different genomic regions associated with virulence, with the majority located on P. teres f. teres chromosomes 3 and 5 and one each present on chromosomes 1, 6, and 9. Four of the regions identified were confirmed by quantitative trait loci (QTL) mapping. The QTL regions are discussed in the context of their genomic architecture together with examination of their gene contents, which identified 20 predicted effectors. The number of QTL shown in this study at the population level clearly illustrates a complex genetic basis of P. teres f. teres virulence compared with pure necrotrophs, such as the wheat pathogens Parastagonospora nodorum and Parastagonospora tritici-repentis.


Subject(s)
Ascomycota , Genome-Wide Association Study , Australia , Genomics , Hordeum , Plant Diseases , Virulence
17.
Trends Plant Sci ; 24(12): 1072-1074, 2019 12.
Article in English | MEDLINE | ID: mdl-31648939

ABSTRACT

The inadequacy of a single reference genome to capture the full landscape of genetic diversity within a species constrains exploration of genetic variation for crop improvement. A recent study by Yang et al. has demonstrated the value of multiple reference-quality genomes in capturing structural variants and guiding biological discovery.


Subject(s)
Genome, Plant , Zea mays , Crops, Agricultural/genetics , Genetic Variation , Genomics
18.
Theor Appl Genet ; 132(3): 751-766, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30343386

ABSTRACT

KEY MESSAGE: We describe the development and application of the Sorghum QTL Atlas, a high-resolution, open-access research platform to facilitate candidate gene identification across three cereal species, sorghum, maize and rice. The mechanisms governing the genetic control of many quantitative traits are only poorly understood and have yet to be fully exploited. Over the last two decades, over a thousand QTL and GWAS studies have been published in the major cereal crops including sorghum, maize and rice. A large body of information has been generated on the genetic basis of quantitative traits, their genomic location, allelic effects and epistatic interactions. However, such QTL information has not been widely applied by cereal improvement programs and genetic researchers worldwide. In part this is due to the heterogeneous nature of QTL studies which leads QTL reliability variation from study to study. Using approaches to adjust the QTL confidence interval, this platform provides access to the most updated sorghum QTL information than any database available, spanning 23 years of research since 1995. The QTL database provides information on the predicted gene models underlying the QTL CI, across all sorghum genome assembly gene sets and maize and rice genome assemblies and also provides information on the diversity of the underlying genes and information on signatures of selection in sorghum. The resulting high-resolution, open-access research platform facilitates candidate gene identification across 3 cereal species, sorghum, maize and rice. Using a number of trait examples, we demonstrate the power and resolution of the resource to facilitate comparative genomics approaches to provide a bridge between genomics and applied breeding.


Subject(s)
Crops, Agricultural/genetics , Genomics/methods , Quantitative Trait Loci/genetics , Sorghum/genetics , Chromosomes, Plant/genetics , Databases, Genetic , Quantitative Trait, Heritable
19.
Mol Plant ; 12(2): 156-169, 2019 02 04.
Article in English | MEDLINE | ID: mdl-30594655

ABSTRACT

Genetic variation ranging from single-nucleotide polymorphisms to large structural variants (SVs) can cause variation of gene content among individuals within the same species. There is an increasing appreciation that a single reference genome is insufficient to capture the full landscape of genetic diversity of a species. Pan-genome analysis offers a platform to evaluate the genetic diversity of a species via investigation of its entire genome repertoire. Although a recent wave of pan-genomic studies has shed new light on crop diversity and improvement using advanced sequencing technology, the potential applications of crop pan-genomics in crop improvement are yet to be fully exploited. In this review, we highlight the progress achieved in understanding crop pan-genomics, discuss biological activities that cause SVs, review important agronomical traits affected by SVs, and present our perspective on the application of pan-genomics in crop improvement.


Subject(s)
Crops, Agricultural/genetics , Genomics/methods , Crops, Agricultural/growth & development , Crops, Agricultural/physiology , Genes, Plant/genetics , Genetic Variation
20.
Plant Genome ; 11(2)2018 07.
Article in English | MEDLINE | ID: mdl-30025022

ABSTRACT

Grain weight has increased during domestication of cereals. Together with grain number it determines yield, but the two are often negatively correlated. Understanding the genetic architecture of grain weight and its relationship with grain number is critical to enhance crop yield. Sorghum is an important food, feed, and biofuel crop well-known for its adaptation to drought and heat. This study aimed to dissect the genetic basis of thousand grain weight (TGW) in a BCF population between a domesticated sorghum accession and its wild progenitor, subsp. and investigate its relationship with grain number. Thousand grain weight, grain number, and yield were measured in field trials in two successive years. A strong negative correlation between TGW and grain number was observed in both trials. In total, 17 TGW quantitative trait loci (QTL) were identified, with 11 of them exhibiting an opposing effect on grain number, implying the correlation between TGW and grain number is due to pleiotropy. Nine grain size candidate genes were identified within 6 TGW QTL, and of these 5 showed signatures of selection during sorghum domestication. Large-effect QTL in this study that have not been identified previously in cultivated sorghum were found to contain candidate genes with domestication signal, indicating that these QTL were affected during sorghum domestication. This study sheds new light on the genetic basis of TGW, its relationship with grain number, and sorghum domestication.


Subject(s)
Quantitative Trait Loci , Seeds/genetics , Sorghum/genetics , Crosses, Genetic , Genetics, Population , Phenotype , Plant Breeding/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...