Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(16)2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34443092

ABSTRACT

The recovery and reuse of waste printed circuit boards (PCBs) has attracted more and more attention from global researchers, as recycling of waste PCB metals is of great significance to the rational utilization of metal material resources. This study puts forward a clean and economical method in which enhanced gravity separation and wet high-gradient magnetic separation were combined to recover waste PCBs with heat treatment at a temperature of 240 °C. The heat treatment could improve the metal liberation effect of the PCBs, and the thermal behavior was measured by thermogravimetric analysis (TGA). The pyrolysis of the non-metal fraction (NMF) began around 300 °C, and the glass transition temperature of epoxy resin was 135.17 °C. The enhanced gravity separation technique was used for the separation of metals and NMF under the compound force field. The metals grade of the gravity concentrates fraction (GRF) was 82.97% under the optimal conditions, and the metals recovery reached 90.55%. A wet high-gradient magnetic separator was applied to classify the GRF into magnetic (MA) and non-magnetic (NMA) fractions, which could achieve iron and copper enrichment. After the three stages combined process, the copper and iron grades of the NMA and MA fractions were 70.17% and 73.42%, and the recovery reached 74.02% and 78.11%, respectively.

2.
J Hazard Mater ; 392: 122322, 2020 Jun 15.
Article in English | MEDLINE | ID: mdl-32097856

ABSTRACT

Flotation is an effective and clean separation technology to realize the recovery of metal in waste printed circuit boards (WPCBs). The flotation kinetic of metal and non-metal components was concerned in this study. In addition, the loading of bubbles, the collision and shedding of particles and bubbles were used to assist in proving the particle dynamics results. By analyzing the force on the particles, the load of bubbles on particles was analyzed, and the appropriate volume ratio of bubbles to particles was 1.5-8.0, depending on the particle density. Moreover, Clift model and Schiller-Naumann model has high fitting accuracy for the final bubble velocity. In addition, metal particles have greater settling velocity, which results in shorter collision time with bubbles. In the process of bubble-particle rising, the shedding probability gradually decreases, and the shedding probability of metal particles is much higher than that of non-metal particles. The results of flotation kinetics show that the removal of impurity particles represented by silicon mainly occurs in the initial stage of flotation process. The loss of copper increases with flotation time and collector dosage. This study reveals the flotation kinetics of particles from the perspectives of bubble loading, bubble-particle collision and shedding.

SELECTION OF CITATIONS
SEARCH DETAIL
...