Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
World J Diabetes ; 15(3): 519-529, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38591093

ABSTRACT

BACKGROUND: Diabetic retinopathy (DR) is a major ocular complication of diabetes mellitus, leading to visual impairment. Retinal pigment epithelium (RPE) injury is a key component of the outer blood retinal barrier, and its damage is an important indicator of DR. Receptor for activated C kinase 1 (RACK1) activates protein kinase C-ε (PKC-ε) to promote the generation of reactive oxygen species (ROS) in RPE cells, leading to apoptosis. Therefore, we hypothesize that the activation of RACK1 under hypoxic/high-glucose conditions may promote RPE cell apoptosis by modulating PKC-ε/ROS, thereby disrupting the barrier effect of the outer blood retinal barrier and contributing to the progression of DR. AIM: To investigate the role and associated underlying mechanisms of RACK1 in the development of early DR. METHODS: In this study, Sprague-Dawley rats and adult RPE cell line-19 (ARPE-19) cells were used as in vivo and in vitro models, respectively, to explore the role of RACK1 in mediating PKC-ε in early DR. Furthermore, the impact of RACK1 on apoptosis and barrier function of RPE cells was also investigated in the former model. RESULTS: Streptozotocin-induced diabetic rats showed increased apoptosis and up-regulated expression of RACK1 and PKC-ε proteins in RPE cells following a prolonged modeling. Similarly, ARPE-19 cells exposed to high glucose and hypoxia displayed elevated mRNA and protein levels of RACK1 and PKC-ε, accompanied by an increases in ROS production, apoptosis rate, and monolayer permeability. However, silencing RACK1 significantly downregulated the expression of PKC-ε and ROS, reduced cell apoptosis and permeability, and protected barrier function. CONCLUSION: RACK1 plays a significant role in the development of early DR and might serve as a potential therapeutic target for DR by regulating RPE apoptosis and barrier function.

2.
Int J Ophthalmol ; 10(6): 982-991, 2017.
Article in English | MEDLINE | ID: mdl-28730092

ABSTRACT

In this review, we summarize the progression of several parameters assessed by spectral-domain optical coherence tomography (SD-OCT) in recent years for the detection of glaucoma. Monitoring the progression of defects in the retinal nerve fiber layer (RNFL) thickness is essential. Imaging and analysis of retinal ganglion cells (RGCs) and inner plexiform layer (IPL), respectively, have been of great importance. Optic nerve head (ONH) topography obtained from 3D SD-OCT images is another crucial step. Other important assessments involve locating the Bruch's membrane opening (BMO), estimating the optic disc size and rim area, and measuring the lamina cribrosa displacement. Still other parameters found in the past three years for glaucoma diagnosis comprise central retinal artery resistive index, optic disc perfusion in optical coherence tomography angiography (OCTA) study, peripapillary choroidal thickness, and choroidal area in SD-OCT. Recently, several more ocular fundus parameters have been found, and compared with the earlier parameters to judge the accuracy of diagnosis. While a few of these parameters have been widely used in clinical practice, a fair number are still in the experimental stage.

SELECTION OF CITATIONS
SEARCH DETAIL
...