Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Org Chem ; 87(15): 9488-9496, 2022 08 05.
Article in English | MEDLINE | ID: mdl-35881945

ABSTRACT

A new one-pot preparation of 4-tetrazolyl-3,4-dihydroquinazolines has been reported. The Ugi-azide reactions of 2-azidobenzaldehydes, amines, trimethylsilyl azide, and isocyanides produced azide intermediates without separation, which were treated with isocyanides to give 4-tetrazolyl-3,4-dihydroquinazoline derivatives through a sequential Palladium-catalyzed azide-isocyanide cross-coupling/cyclization reaction in moderate to good yields. The biological evaluation demonstrated that compound 6c inhibited breast cancer cells well and displayed broad applications for synthesis and medicinal chemistry.


Subject(s)
Cyanides , Palladium , Azides , Catalysis , Cyanides/chemistry , Cyclization , Molecular Structure , Palladium/chemistry
2.
BMC Plant Biol ; 22(1): 43, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35062882

ABSTRACT

In desert habitats, sand burial is an important factor affecting germination of plant seeds and seedling growth. Xanthium spinosum has strong adaptability in arid desert areas, and is a common malignant invasive plant in Xinjiang, China. The effects of different sand burial depths on seed germination, seedling emergence, growth and biomass allocation were studied to provide a scientific basis for further control of X. spinosum. Six sand burial depths (1, 2, 3, 5, 7 and 9 cm) were established to explore the response of X. spinosum seed germination and seedling growth to sand burial. The first emergence time, peak emergence time, emergence rate, seedling growth height, biomass and biomass distribution of X. spinosum seeds was significantly different at sand burial depths (P < 0.05). The X. spinosum seeds had the highest emergence rate (71.5%) at 1 cm sand burial and the maximum seedling height (7.1 cm). As sand burial depth increased, the emergence rate and seedling height gradually decreased. Emergence rate (12.25%) and seedling height (2.9 cm) were lowest at 9 cm sand burial. The root length at 9 cm depth (13.6 cm) was significantly higher than that at other sand depths (P < 0.05). The sand burial depth affected the biomass accumulation and distribution of X. spinosum. As sand burial depth increased, the root biomass and rhizome ratio increased, and the most deeply buried seedlings allocated more biomass for root growth. The optimal sand burial depth for seed germination and seedling growth of X. spinosum was 1-3 cm, and high burial depth (5-9 cm) was not conducive to the germination and growth of X. spinosum seedlings. For prevention and control of X. spinosum, we suggest deeply ploughing crops before sowing to ensure X. spinosum seeds are ploughed into a deep soil layer.


Subject(s)
Sand , Seedlings/growth & development , Seeds/growth & development , Xanthium/growth & development , Biomass , China , Germination/physiology , Introduced Species
3.
Eur J Med Chem ; 218: 113392, 2021 Jun 05.
Article in English | MEDLINE | ID: mdl-33831778

ABSTRACT

Histone deacetylase 6 (HDAC6) has emerged as a critical regulator of many cellular pathways in tumors due to its unique structure basis and abundant substrate types. Over the past few decades, the role played by HDAC6 inhibitors as anticancer agents has sparked great interest of biochemists worldwide. However, they were less reported for gastric cancer therapy. In this paper, with the help of bioisosteric replacement, in-house library screening, and lead optimization strategies, we designed, synthesized and verified a series of 1,3-diaryl-1,2,4-triazole-capped HDAC6 inhibitors with promising anti-gastric cancer activities. Amongst, compound 9r displayed the best inhibitory activity towards HDAC6 (IC50 = 30.6 nM), with 128-fold selectivity over HDAC1. Further BLI and CETSA assay proved the high affinity of 9r to HDAC6. In addition, 9r could dose-dependently upregulate the levels of acetylated α-tubulin, without significant effect on acetylated histone H3 in MGC803 cells. Besides, 9r exhibited potent antiproliferative effect on MGC803 cells, and promoted apoptosis and suppressed the metastasis without obvious toxicity, suggesting 9r would serve as a potential lead compound for the development of novel therapeutic agents of gastric cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Histone Deacetylase 6/antagonists & inhibitors , Histone Deacetylase Inhibitors/pharmacology , Stomach Neoplasms/drug therapy , Triazoles/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Female , Histone Deacetylase 6/metabolism , Histone Deacetylase Inhibitors/chemical synthesis , Histone Deacetylase Inhibitors/chemistry , Humans , Male , Mice , Mice, Inbred C57BL , Molecular Structure , Stomach Neoplasms/metabolism , Stomach Neoplasms/pathology , Structure-Activity Relationship , Triazoles/chemical synthesis , Triazoles/chemistry
4.
Eur J Med Chem ; 199: 112349, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32438199

ABSTRACT

In this paper, a series of thiosemicarbazone derivatives containing different aromatic heterocyclic groups were synthesized and the tridentate donor system of the lead compound was optimized. Most of the target compounds showed improved antiproliferative activity against MGC803 cells. SAR studies revealed that compound 5d displayed significant advantages in inhibition effect with an IC50 value of 0.031 µM, and better selectivity between cancer and normal cells than 3-AP and DpC (about 15- and 5-fold improved respectively). Besides, compound 5d showed selective antiproliferative activity in not only other cancer cells but also different gastric cancer cell lines. In-depth mechanism studies showed that compound 5d could induce mitochondria-related apoptosis which might be related to the elevation of intracellular ROS level, and cause cell cycle arrest at S phase. Moreover, 5d could evidently suppress the cell migration and invasion by blocking the EMT (epithelial-mesenchymal transition) process. Consequently, our studies provided a lead optimization strategy of thiosemicarbazone derivatives which would contribute to discover high-efficiency and low-toxicity agents for the treatment of gastric cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Drug Discovery , Stomach Neoplasms/drug therapy , Thiosemicarbazones/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Epithelial-Mesenchymal Transition/drug effects , Humans , Molecular Structure , Stomach Neoplasms/pathology , Structure-Activity Relationship , Thiosemicarbazones/chemical synthesis , Thiosemicarbazones/chemistry , Tumor Cells, Cultured , Wound Healing/drug effects
5.
PeerJ ; 7: e7818, 2019.
Article in English | MEDLINE | ID: mdl-31632851

ABSTRACT

The bamboo snout beetle Cyrtotrachelus buqueti is a widely distributed wood-boring pest found in China, and its larvae cause significant economic losses because this beetle targets a wide range of host plants. A potential pest management measure of this beetle involves regulating olfactory chemoreceptors. In the process of olfactory recognition, pheromone-binding proteins (PBPs) play an important role. Homology modeling and molecular docking were conducted in this study for the interaction between CbuqPBP1 and dibutyl phthalate to better understand the relationship between PBP structures and their ligands. Site-directed mutagenesis and binding experiments were combined to identify the binding sites of CbuqPBP1 and to explore its ligand-binding mechanism. The 3D structural model of CbuqPBP1 has six a-helices. Five of these a-helices adopt an antiparallel arrangement to form an internal ligand-binding pocket. When docking dibutyl phthalate within the active site of CbuqPBP1, a CH-π interaction between the benzene ring of dibutyl phthalate and Phe69 was observed, and a weak hydrogen bond formed between the ester carbonyl oxygen and His53. Thus, Phe69 and His53 are predicted to be important residues of CbuqPBP1 involved in ligand recognition. Site-directed mutagenesis and fluorescence assays with a His53Ala CbuqPBP1 mutant showed no affinity toward ligands. Mutation of Phe69 only affected binding of CbuqPBP1 to cedar camphor. Thus, His53 (Between α2 and α3) of CbuqPBP1 appears to be a key binding site residue, and Phe69 (Located at α3) is a very important binding site for particular ligand interactions.

6.
Pest Manag Sci ; 72(7): 1381-9, 2016 Jul.
Article in English | MEDLINE | ID: mdl-26443001

ABSTRACT

BACKGROUND: To develop a coumarin-based fungicide, a series of 3-benzoyl-4-hydroxylcoumarin derivatives were synthesised and their fungicidal activities were evaluated against typical fungi occurring in Chinese agroecosystems. RESULTS: Target compounds were characterised through (1) H NMR, (13) C NMR and high-resolution mass spectrometry. The crystal structure of compound III-21 was determined through X-ray diffraction. Bioassay results indicated that most of the target compounds showed good growth inhibition against all of the fungi tested in vitro. EC50 of the target compounds against Physalospora piricola, Rhizoctonia cerealis, Sclerotinia sclerotiorum and Botrytis cinerea indicated that most of the target compounds displayed comparable activity with that of carbindazim and chlorothalonil in vitro. Among these compounds, the analogue 3-(2-bromo-4-chlorobenzoyl)-4-hydroxylcoumarin (III-21) displayed the optimum growth inhibition against R. cerealis (87.5%) and B. cinerea (82.7%) in vivo at 200 µg mL(-1) concentration; thus, this analogue is a potential inhibitor of pathogenic fungi and a new major compound for further optimisation. The results of analysing the structure-activity relationships demonstrated that changes in substituents on benzene ring A of 3-benzoyl-4-hydroxylcoumarin caused different fungicidal activities and provided original information on the preferential conformation to maintain high activities. CONCLUSION: The present work demonstrated that 3-benzoyl-4-hydroxylcoumarin derivatives can be used as possible major compounds to develop novel fungicides. © 2015 Society of Chemical Industry.


Subject(s)
Ascomycota , Botrytis , Coumarins/chemical synthesis , Fungicides, Industrial/chemical synthesis , Rhizoctonia , Xylariales , Coumarins/chemistry , Structure-Activity Relationship , X-Ray Diffraction
7.
Bioorg Med Chem ; 24(2): 92-103, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26682702

ABSTRACT

A series of (2-benzoylethen-1-ol)-containing benzothiazine derivatives was synthesized, and their herbicidal activities were first evaluated. The bioassay results indicated that some of 3-benzoyl-4-hydroxy-2-methyl-2H-1,2-benzothiazine-1,1-dioxide derivatives displayed good herbicidal activity in greenhouse testing, especially, compound 4w had good pre-emergent herbicidal activities against Brassica campestris, Amaranthus retroflexus and Echinochloa crusgalli even at a dosage of 187.5 g ha(-1). More importantly, compound 4w displayed significant inhibitory activity against Arabidopsis thaliana HPPD and was identified as the most potent candidate with IC50 value of 0.48 µM, which is better than the commercial herbicide sulctrione (IC50=0.53 µM) and comparable with the commercial herbicide mesotrione (IC50=0.25 µM). The structure-activity relationships was studied and provided some useful information for improving herbicidal activity. The present work indicated that (2-benzoylethen-1-ol)-containing 1,2-benzothiazine motif could be a potential lead structure for further development of novel HPPD inhibiting-based herbicides.


Subject(s)
4-Hydroxyphenylpyruvate Dioxygenase/antagonists & inhibitors , Arabidopsis/enzymology , Cyclic S-Oxides/pharmacology , Drug Discovery , Herbicides/pharmacology , Thiazines/pharmacology , 4-Hydroxyphenylpyruvate Dioxygenase/metabolism , Amaranthus/drug effects , Arabidopsis/drug effects , Brassica/drug effects , Cyclic S-Oxides/chemistry , Dose-Response Relationship, Drug , Echinochloa/drug effects , Herbicides/chemical synthesis , Herbicides/chemistry , Humans , Molecular Structure , Structure-Activity Relationship , Thiazines/chemical synthesis , Thiazines/chemistry
8.
Gene ; 538(1): 1-7, 2014 Mar 15.
Article in English | MEDLINE | ID: mdl-24462969

ABSTRACT

Camellia chekiangoleosa is an important species of genus Camellia. It provides high-quality edible oil and has great ornamental value. The flowers are big and red which bloom between February and March. Flower pigmentation is closely related to the accumulation of anthocyanin. Although anthocyanin biosynthesis has been studied extensively in herbaceous plants, little molecular information on the anthocyanin biosynthesis pathway of C. chekiangoleosa is yet known. In the present study, a cDNA library was constructed to obtain detailed and general data from the flowers of C. chekiangoleosa. To explore the transcriptome of C. chekiangoleosa and investigate genes involved in anthocyanin biosynthesis, a 454 GS FLX Titanium platform was used to generate an EST dataset. About 46,279 sequences were obtained, and 24,593 (53.1%) were annotated. Using Blast search against the AGRIS, 1740 unigenes were found homologous to 599 Arabidopsis transcription factor genes. Based on the transcriptome dataset, nine anthocyanin biosynthesis pathway genes (PAL, CHS1, CHS2, CHS3, CHI, F3H, DFR, ANS, and UFGT) were identified and cloned. The spatio-temporal expression patterns of these genes were also analyzed using quantitative real-time polymerase chain reaction. The study results not only enrich the gene resource but also provide valuable information for further studies concerning anthocyanin biosynthesis.


Subject(s)
Anthocyanins/biosynthesis , Camellia/genetics , Genes, Plant , Transcriptome , Anthocyanins/genetics , Base Sequence , Camellia/chemistry , Expressed Sequence Tags , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation , Molecular Sequence Data , Sequence Analysis, DNA , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...