Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 832: 155142, 2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35405241

ABSTRACT

CaCO3 filler masterbatch (CFM) is one of the most commonly used fillers in polypropylene (PP) and polyethylene (PE) products, and its is used to enhance the toughness of the polymer matrix. This is the first study to investigate the loss of CaCO3 and its impact on the adsorption ability of microplastics from plastic woven bags throughout the natural aging process. PP wire (PPw, 85% PP + 15% CFM) and PE film (PEf, 80% PE + 20% CFM) samples from plastic woven bags underwent a 250 d aging process in an open-air environment. Changes in the surface properties, morphology, CaCO3 content, and density of PPw microplastics (PPw-MP) and PEf microplastics (PEf-MP) after various durations of aging were investigated by scanning electron microscopy, infrared spectroscopy, and thermogravimetric analysis. The results showed that CaCO3 separated and agglomerated on the surfaces of PPw-MP and PEf-MP after 30 d. After 250 d, 42% of CaCO3 was lost from PPw-MP and 28% was lost from PEf-MP, decreasing the density of the microplastic samples. CFM presented a considerably higher adsorption affinity toward Cu(II) than PP particles and PE particles; therefore, its presence in plastic matrix increased the adsorption ability of the products. The adsorption of Cu(II) on PPw-MP and PEf-MP decreased with aging because of the loss of CaCO3 and poor development of O-containing functional groups. The qm value (maximum adsorption quantity of Langmuir model) decreased from 11.01 mg/g in unaged PPw-MP to 1.35 mg/g in aged PPw-MP, and from 9.00 mg/g in unaged PEf-MP to 1.05 mg/g in aged PEf-MP. Overall, the findings demonstrate that CaCO3 was crucial for the heavy metal-plastic interactions of the samples. Therefore, the results provide a basis to further clarify the potential environmental risks of plastic woven bags associated with heavy metal mobility.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Adsorption , Calcium Carbonate , Metals, Heavy/analysis , Microplastics , Plastics/chemistry , Polypropylenes , Water Pollutants, Chemical/analysis
2.
Ecotoxicology ; 30(2): 231-239, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33483874

ABSTRACT

Chromium (Cr) pollution in farmlands is a common environmental issue, that can seriously inhibit plant growth, damage plant cells, and even cause plant death. In this study, bok choy (Brassica campestris L. ssp. chinensis Makino (var. communis Tsen et Lee)) was selected as a model plant to investigate the metabolic response to Cr stress at concentrations of 2.0 mg/L and 8.0 mg/L. Metabolites were identified using gas chromatography-mass spectrometry. Principal component analysis and orthogonal projections to latent structure discriminant analysis revealed the notable effect of Cr stress on the metabolites of bok choy. Under Cr stress, 145 metabolites were identified in the bok choy leaves. At 2.0 mg/L Cr stress, 10 and 26 metabolites changed compared to the control after 7 d and 14 d, respectively. At 8.0 mg/L Cr stress, 24 and 24 metabolites changed significantly after 7 and 14 d, respectively. The data showed that metabolism was affected by the Cr stress concentration and exposure time. Specifically, under the Cr stress, the tricarboxylic acid cycle, glutamine synthetase/glutamate synthase cycle, and partial amino acid metabolic pathways were blocked, inhibiting the normal growth and development of bok choy. The change of citric acid content was the most significant, and the accumulation of citric acid indicated the degree of plant Cr toxicity and resistance. These results would facilitate further dissection of the mechanisms of heavy metal accumulation/tolerance in plants and the effective management of such contamination in vegetable crops by genetic manipulation.


Subject(s)
Brassica , Metals, Heavy , Soil Pollutants , Chromium/toxicity , Environmental Pollution , Metals, Heavy/analysis , Plant Leaves/chemistry , Soil Pollutants/analysis
3.
Water Sci Technol ; 80(6): 1076-1084, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31799951

ABSTRACT

In this study, starch-stabilized nanoscale zero-valent iron (S-nZVI) was produced using the liquid-phase reduction method. It was used to remove chromium from wastewater, and compared to a commercial nanoscale zero-valent iron (C-nZVI). Both nZVIs were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The characterization results showed that S-nZVI had smaller particles and a more uniform particle size distribution than C-nZVI. Both nZVIs showed a core-shell structure with the Fe0 core prominently surrounded by less iron oxides of Fe2+ and Fe3+. The optimal application methods to remove Cr(VI) from wastewater were also explored. The results showed that both the removal efficiencies of total Cr and Cr(VI) increased with increases in the addition of nZVIs, while the removal efficiencies of total Cr and Cr(VI) by S-nZVI were clearly higher than that of C-nZVI, especially in a low pH range (pH = 1.0-6.0). This research indicated that starch-stabilized nanoscale zero-valent iron is a valuable material to remove heavy metals from wastewater due to its stability and high reactivity.


Subject(s)
Wastewater , Water Pollutants, Chemical , Chromium , Iron , Starch
4.
J Exp Bot ; 64(11): 3077-86, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23814278

ABSTRACT

Drought is a major environmental stress factor that limits agricultural production worldwide. Plants employ complex mechanisms of gene regulation in response to drought stress. MicroRNAs (miRNAs) are a class of small RNAs that are increasingly being recognized as important modulators of gene expression at the post-transcriptional level. Many miRNAs have been shown to be involved in drought stress responses, including ABA response, auxin signalling, osmoprotection, and antioxidant defence, by downregulating the respective target genes encoding regulatory and functional proteins. This review summarizes recent molecular studies on the miRNAs involved in the regulation of drought-responsive genes, with emphasis on miRNA-associated regulatory networks involved in drought stress response.


Subject(s)
Droughts , MicroRNAs/genetics , Plants/genetics , Gene Expression Regulation, Plant , Models, Biological
SELECTION OF CITATIONS
SEARCH DETAIL
...