Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 193: 115115, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37300958

ABSTRACT

Nemopilema nomurai is a frequently bloomed species in the China seas. Their feeding organ has an ontogenetic change when they grow up, but whether their diet changes along with it is unclear. A 5-month study on N. nomurai was conducted in Liaodong Bay, China to clarify the dietary shift and feeding effect of N. nomurai. Fatty acid biomarkers revealed the proportion of carnivorous food in the diet of N. nomurai decreased when their bell diameter increased. The isotope data revealed a similar story with δ15N dropping which indicated a decreased trophic level. The diet composition was dominated (74 %) by zooplankton >200 µm in May and then decreased to <32 % in July. In contrast, the proportion of particulate organic matter increased from <35 % to 68 %. This study revealed a monthly shift in the diet of N. nomurai and contributed to knowledge of trophic interactions between plankton and N. nomurai.


Subject(s)
Cnidaria , Scyphozoa , Animals , Bays , Oceans and Seas , Diet
2.
Sci Rep ; 12(1): 18908, 2022 11 07.
Article in English | MEDLINE | ID: mdl-36344650

ABSTRACT

Zooplankton can affect and regulate the biological carbon pump in the biogeochemical cycles of marine ecosystems through diel vertical migration (DVM) behaviour. The diel vertical distribution and migration of a zooplankton community were studied at a continuous survey station in the Caroline Seamount area of the western tropical Pacific Ocean. Using a MultiNet sampling system, 346 zooplankton species/taxa were collected and identified. The vertical distribution patterns of abundance and composition of the zooplankton community differed between daytime and nighttime. The highest biodiversity index occurred in the 100-200-m ocean depth layer, but some zooplankton species remained in the deep-water layer below 300 m. The DVM patterns of the various dominant species differed, even when the species belonged to the same order or family. Dissolved oxygen and seawater temperature were the main environmental factors affecting the diel vertical distribution of the zooplankton community. The oxygen minimum zone was identified as performing the dual role of "ecological barrier" and "refuge" for zooplankton. The active carbon flux mediated by the zooplankton DVM in the Caroline Seamount area was 14.5 mg C/(m2·d). Our findings suggest that zooplankton DVM can affect and mediate the biological carbon pump in the Caroline Seamount area.


Subject(s)
Ecosystem , Zooplankton , Animals , Zooplankton/physiology , Pacific Ocean , Biomass , Carbon , Oxygen
3.
PLoS One ; 15(6): e0234981, 2020.
Article in English | MEDLINE | ID: mdl-32574186

ABSTRACT

The corrosion behavior of an AZ91D magnesium alloy was investigated under a heterogeneous electrolyte layer by using electrochemical methods and surface analysis techniques. Dynamic polarization curves and morphological characterization were obtained at the center and near the edge zones under the electrolyte layer. The influence of the gas/liquid/solid three-phase boundary zone (TPB) on the corrosion behavior of the AZ91D magnesium alloy was discussed. The corrosion rate changed more significantly near the TPB zone than that at the other zones. The AZ91D alloy exhibited the characteristics of filiform corrosion together with shallow pitting corrosion. Different from the randomly distributed shallow pits, the filiform corrosion preferred to initiate near the TPB region and then progressively expanded adjacent to the edge of the electrolyte layer. The TPB zone played a vital role in determining the corrosion location, the corrosion morphologies and the corrosion rate of the magnesium alloy by influencing the mass transport process of carbon dioxide.


Subject(s)
Alloys/chemistry , Electrolytes/chemistry , Magnesium/chemistry , Corrosion , Electrochemical Techniques/instrumentation , Electrodes , Surface Properties , X-Ray Diffraction
4.
PLoS One ; 10(2): e0115825, 2015.
Article in English | MEDLINE | ID: mdl-25688560

ABSTRACT

Grazing and metabolism of Euphausia pacifica in the Yellow Sea were studied from September 2006 to August 2007. Euphausia pacifica is a selective-feeding omnivore and grazing rates among different months were monitored using a Coulter Counter and batch culture feeding experiments. Euphausia pacifica mainly grazed microzooplankton in August and September, which resulted in an increase in chlorophyll a concentration. Oxygen consumption rate of E. pacifica was 38.7-42.5 µmol O2 g(-1) DW h(-1) in March, which was four times higher than the oxygen consumption rates in September and December. The vigorous metabolism of E. pacifica in March consumed 3.1% of body carbon daily, which is likely related to its high reproduction and grazing rate. Respiration and metabolism of E. pacifica in September and December were similar and were lower. O:N ratio of E. pacifica was the highest (17.3-23.8) in March when spawning activity occurred and when food was abundant. The energetic source of E. pacifica during September and December was mostly protein from eating a carnivorous diet, including such items as microzooplankton. Euphausia pacifica was found in cold water at the bottom of the Yellow Sea in summer and autumn and maintained a low consumption status. O:N ratios of E. pacifica in March, September, and December were negatively correlated with SSTs and no significant correlation was found between O:N ratios and chlorophyll a concentration. Seawater temperature is clearly the most important parameter influencing the metabolism of E. pacifica.


Subject(s)
Energy Metabolism , Euphausiacea , Herbivory , Animal Feed , Animals , China , Chlorophyll , Chlorophyll A , Environment , Seasons , Seawater
SELECTION OF CITATIONS
SEARCH DETAIL
...