Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; 62(16): e202218630, 2023 Apr 11.
Article in English | MEDLINE | ID: mdl-36732313

ABSTRACT

The transformation from metal nanocluster catalysts to metal single-atom catalysts is an important procedure in the rational design of atomically dispersed metal catalysts (ADCs). However, the conversion methods often involve high annealing temperature as well as reducing atmosphere. Herein, we reported a continuous and convenient approach to transfer Pd nanocluster into Pd single-atom in a ligand assisted annealing procedure, by which means we reduced its activating temperature low to 400 °C. Using ex-situ microscopy and spectroscopy, we comprehensively monitored the structural evolution of Pd species though the whole atomization process. Theoretical calculation revealed that the structural instability caused by remaining Cl ligands was the main reason for this low-temperature transformation. The present atomization strategy and mechanistic knowledge for the conversion from cluster to atomic dispersion provides guidelines for the rational design of ADCs.

2.
J Am Chem Soc ; 143(30): 11317-11324, 2021 Aug 04.
Article in English | MEDLINE | ID: mdl-34293258

ABSTRACT

The development of atomically precise dinuclear heterogeneous catalysts is promising to achieve efficient catalytic performance and is also helpful to the atomic-level understanding on the synergy mechanism under reaction conditions. Here, we report a Ni2(dppm)2Cl3 dinuclear-cluster-derived strategy to a uniform atomically precise Ni2 site, consisting of two Ni1-N4 moieties shared with two nitrogen atoms, anchored on a N-doped carbon. By using operando synchrotron X-ray absorption spectroscopy, we identify the dynamically catalytic dinuclear Ni2 structure under electrochemical CO2 reduction reaction, revealing an oxygen-bridge adsorption on the Ni2-N6 site to form an O-Ni2-N6 structure with enhanced Ni-Ni interaction. Theoretical simulations demonstrate that the key O-Ni2-N6 structure can significantly lower the energy barrier for CO2 activation. As a result, the dinuclear Ni2 catalyst exhibits >94% Faradaic efficiency for efficient carbon monoxide production. This work provides bottom-up target synthesis approaches and evidences the identity of dinuclear sites active toward catalytic reactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...