Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Publication year range
1.
Water Res ; 260: 121908, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38878307

ABSTRACT

Graphene oxide (GO, a popular 2D nanomaterial) poses great potential in water treatment arousing considerable attention regarding its fate and risk in aquatic environments. Extracellular polymeric substances (EPS) exist widely in water and play critical roles in biogeochemical processes. However, the influences of complex EPS fractions on the fate and risk of GO remain unknown in water. This study integrates fluorescence excitation-emission matrix-parallel factor, two-dimensional correlation spectroscopy, and biolayer interferometry studies on the binding characteristics and affinity between EPS fractions and GO. The results revealed the preferential binding of fluorescent aromatic protein-like component, fulvic-like component, and non-fluorescent polysaccharide in soluble EPS (S-EPS) and bound EPS (B-EPS) on GO via π-π stacking and electrostatic interaction that contributed to a higher adsorption capacity of S-EPS on GO and weaker affinity than of B-EPS. Moreover, the EPS fractions drive the morphological and structural alterations, and the attenuated colloid stability of GO in water. Notably, GO-EPS induced stronger phytotoxicity (e.g., photosynthetic damage, and membrane lipid remodeling) compared to pristine GO. Metabolic and functional lipid analysis further elucidated the regulation of amino acid, carbohydrate, and lipid metabolism contributed to the persistent phytotoxicity. This work provides insights into the roles and mechanisms of EPS fractions composition in regulating the environmental fate and risk of GO in natural water.

2.
Huan Jing Ke Xue ; 45(6): 3446-3458, 2024 Jun 08.
Article in Chinese | MEDLINE | ID: mdl-38897765

ABSTRACT

Under the dual constraints of economic development and ecological carrying capacity, it is necessary to explore more technical means to achieve carbon neutrality and peak in China. Plants are important carriers of terrestrial and marine carbon sink systems, whereas phytoremediation is also a scientific method to remedy environmental pollution. However, the current studies mostly focus on the single aspect of plant carbon sequestration (including both the reduction of pollutant concentrations in environmental media and degradation of pollutants) or plant pollution reduction, without considering the dual benefits of plant pollution reduction and carbon sequestration. In order to explore the carbon neutral effect of plants, we focused on the pollution reduction and carbon sequestration effect of carbon neutral plants and its progress and evaluated the pollution reduction and carbon sequestration potential of carbon neutral plants and other organisms (such as animals and soil microorganisms) and environmental functional materials. The mechanisms underlying the synergistic coupling of carbon neutral plants and animals, microorganisms, and environmental functional materials and ecosystems in reducing pollution and carbon sequestration were also explored. Finally, we proposed constructive prospects for future research on the effects of carbon neutral plants on pollution reduction and carbon sink.


Subject(s)
Biodegradation, Environmental , Carbon Sequestration , Carbon , Environmental Pollution , Plants , Plants/metabolism , Carbon/metabolism , Environmental Pollution/prevention & control , China , Ecosystem
3.
Sci Bull (Beijing) ; 2024 May 11.
Article in English | MEDLINE | ID: mdl-38789326

ABSTRACT

The interplay between multi-atom assembly configurations and single atoms (SAs) has been gaining attention in research. However, the effect of long-term range interactions between SAs and multi-atom assemblies on the orbital filling characteristics has yet to be investigated. In this context, we introduced copper (Cu) doping to strengthen the interaction between cobalt (Co) nanoparticles (NPs) and Co SAs by promoting the spontaneous formation of Co-Cu alloy NPs that tends toward aggregation owing to its negative cohesive energy (-0.06454), instead of forming Cu SAs. The incorporation of Cu within the Co-Cu alloy NPs, compared to the pure Co NPs, significantly expedites the kinetics of peroxymonosulfate (PMS) oxidation processes on Co SAs. Unlike Co NPs, Co-Cu NPs facilitate electron rearrangement in the d orbitals (especially dz2 and dxz) near the Fermi level in Co SAs, thereby optimizing the dz2-O (PMS) and dxz-O (SO5-) orbital interaction. Eventually, the Co-Cu alloy NPs embedded in nitrogen-doped carbon (CC@CNC) catalysts rapidly eliminated 80.67% of 20 mg/L carbamazepine (CBZ) within 5 min. This performance significantly surpasses that of catalysts consisting solely of Co NPs in a similar matrix (C@CNC), which achieved a 58.99% reduction in 5 min. The quasi in situ characterization suggested that PMS acts as an electron donor and will transfer electrons to Co SAs, generating 1O2 for contaminant abatement. This study offers valuable insights into the mechanisms by which composite active sites formed through multi-atom assembly interact at the atomic orbital level to achieve high-efficiency PMS-based advanced oxidation processes at the atomic orbital level.

4.
Water Res ; 251: 121167, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38301404

ABSTRACT

Microplastic contamination has become increasingly aggravated in coastal environments, further affecting biogeochemical processes involved with microbial community shifts. As a key biogeochemical process mainly driven by microbiota in coastal wetland sediments, litter decomposition contributes greatly to the global greenhouse gas (GHG) budget. However, under microplastic pollution, the relationship between microbial alterations and GHG emissions during litter decomposition in coastal wetlands remains largely unknown. Here, we explored the microbial mechanism by which polyethylene microplastic (PE-MP) influenced greenhouse gas (i.e., CH4, CO2 and N2O) emissions during litter decomposition in coastal sediments through a 75-day microcosm experiment. During litter decomposition, PE-MP exposure significantly decreased cumulative CH4 and CO2 emissions by 41.07% and 25.79%, respectively. However, there was no significant change in cumulative N2O emissions under PE-MP exposure. The bacterial, archaeal, and fungal communities in sediments exhibited varied responses to PE-MP exposure over time, as reflected by the altered structure and changed functional groups of the microbiota. The altered microbial functional groups ascribed to PE-MP exposure and sediment property changes might contribute to suppressing CH4 and CO2 emissions during litter decomposition. This study yielded valuable information regarding the effects of PE-MP on GHG emissions during litter decomposition in coastal wetland sediments.


Subject(s)
Greenhouse Gases , Wetlands , Greenhouse Gases/analysis , Microplastics , Plastics , Polyethylene , Carbon Dioxide , Methane/analysis , Nitrous Oxide/analysis , Soil
5.
Environ Sci Technol ; 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38319346

ABSTRACT

Microplastics (MPs) are considered to influence fundamental biogeochemical processes, but the effects of plant residue-MP interactions on soil carbon turnover in urban greenspaces are virtually unknown. Here, an 84-day incubation experiment was constructed using four types of single-vegetation-covered soils (6 years), showing that polystyrene MP (PSMP) pollution caused an unexpectedly large increase in soil CO2 emissions. The additional CO2 originating from highly bioavailable active dissolved organic matter molecules (<380 °C, predominantly polysaccharides) was converted from persistent carbon (380-650 °C, predominantly aromatic compounds) rather than PSMP derivatives. However, the priming effect of PSMP derivatives was weakened in plant-driven soils (resistivity: shrub > tree > grass). This can be explained from two perspectives: (1) Plant residue-driven humification processes reduced the percentage of bioavailable active dissolved organic matter derived from the priming effects of PSMPs. (2) Plant residues accelerated bacterial community succession (dominated by plant residue types) but slowed fungal community demise (retained carbon turnover-related functional taxa), enabling specific enrichment of glycolysis, the citric acid cycle and the pentose phosphate pathway. These results provide a necessary theoretical basis to understand the role of plant residues in reducing PSMP harm at the ecological level and refresh knowledge about the importance of biodiversity for ecosystem stability.

6.
Sci Total Environ ; 904: 166643, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37647959

ABSTRACT

Increasing attention is being given to magnetic iron-based nanoparticles (MINPs) because of their potential environmental benefits. Owing to the earth abundance and high utilization of MINPs, as well as the significant functions of Fe in sustainable agriculture and environmental remediation, an understanding of the environmental fate of MINPs is indispensable. However, there are still knowledge gaps regarding the largely unknown environmental behaviors and fate of MINPs in soil-plant system. Thus, this review summarizes recent literature on the biogeochemical behavior (uptake, transportation, and transformation) of MINPs in soil and plants. The different possible uptake (e.g., foliar and root adsorption) and translocation (e.g., xylem, phloem, symplastic/apoplastic pathway, and endocytosis) pathways are discussed. Furthermore, drivers of MINPs uptake and transportation (e.g., soil characteristics, fertilizer treatments, copresence of inorganic and organic anions, meteorological conditions, and cell wall pores) in both soil and plant environments are summarized. This review also details the physical, chemical, and biological transformations of MINPs in soil-plant system. More importantly, a metadata analysis from the existing literature was employed to investigate the distinction between MINPs and other engineering nanoparticles biogeochemical behavior. In the future, more attention should be given to understanding the behavior of MINPs in soil-plant system and improving the capabilities of predictive models. This review thus highlights the main knowledge gaps regarding MINPs behavior and fate to provide guidance for their safe application in agrochemicals, crop production, and soil health.


Subject(s)
Nanoparticles , Soil Pollutants , Soil , Plants/metabolism , Iron/analysis , Magnetic Phenomena , Soil Pollutants/analysis
7.
Chem Sci ; 14(29): 7818-7827, 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37502324

ABSTRACT

The optimization of the single-atom catalyst (SAC) performance has been the hot spot for years. It is widely acknowledged that the incorporation of adjacent single-atom sites (diatomic catalysts (DACs)) can enable synergistic effects, which can be used in cascade catalysis, dual-function catalysis, and performance regulation of intrinsic active sites. DACs have been widely applied in the CO2 reduction reaction (CO2RR), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), etc.; however, their application is limited in Fenton or Fenton-like reactions. This perspective summarizes the most advanced achievements in this field, followed by the proposed opportunities in further research, including regulation of the magnetic moment, inter-atomic distance effect, strain engineering, atomic cluster (AC)/nanoparticle (NP) modification, etc. It is demonstrated that this perspective can contribute to the DAC application in Fenton or Fenton-like reactions with innovative design and mechanisms being put forward.

8.
J Hazard Mater ; 459: 132107, 2023 10 05.
Article in English | MEDLINE | ID: mdl-37515989

ABSTRACT

Iron oxide nanoparticles (IONPs) have great application potential due to their multifunctional excellence properties, leading to the possibility of their release into soil environments. IONPs exhibit different adsorption properties toward environmental pollutants (e.g., heavy metals and organic compounds), thus the adsorption performance for various contaminants and the molecular interactions at the IONPs-pollutants interface are discussed. After solute adsorption, the change in the environmental behavior of IONPs is an important transformation process in the natural environments. The aggregation, aging process, and chemical/biological transformation of IONPs can be altered by soil solution chemistry, as well as by the presence of dissolved organic matter and microorganisms. Upon exposure to soil environments, IONPs have both positive and negative impacts on soil organisms (e.g., bacteria, plants, nematodes, and earthworms). Moreover, we compared the toxicity of IONPs alone to combined toxicity with environmental pollutants and pristine IONPs to aged IONPs, and the mechanisms of IONPs toxicity at the cellular level are also reviewed. Given the unanswered questions, future research should include prediction and design of IONPs, new characterization technology for monitoring IONPs transformation in soil ecosystems, and further refinement the environmental risk assessment of IONPs. This review will greatly enhance our knowledge of the performance and impact of IONPs in soil systems.


Subject(s)
Environmental Pollutants , Nanoparticles , Soil , Ecosystem , Adsorption , Magnetic Iron Oxide Nanoparticles , Nanoparticles/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...