Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 157
Filter
1.
Behav Brain Res ; 471: 115142, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38972486

ABSTRACT

Depression is a life-threatening neurodegenerative disease lacking a complete cure. Cajaninstilbene acid (CSA), a potent stilbene compound, has demonstrated neuroprotective effects, however, studies on its antidepressant mechanisms are still scarce. This study examined the effects of CSA on lipopolysaccharide (LPS)-induced and chronic unpredictable mild stress (CUMS)-induced depression in mice, investigating its mechanisms related to inflammation and autophagy. Mice were treated with CSA (7.5, 15, and 30 mg/kg) daily for 3 weeks before intraperitoneal LPS injection (0.8 mg/kg). Another cohort underwent the same doses of CSA (7.5-30 mg/kg) daily for 6 weeks in accompany with CUMS stimulation. Behavioral assessments were conducted, and cortical samples were collected for molecular analysis. Findings indicate that CSA ameliorated depressive behaviors induced by both LPS and CUMS. Notably, CSA (15 mg/kg) reversed despair behavior in mice more persistently than amitriptyline, indicating that optimal doses of CSA may effectively decelerate the procession of mood despair and yield a good compliance. CSA countered CUMS-induced activation of TLR4/NF-κB pathway and the reduction in autophagy levels. Furthermore, CSA attenuated the CUMS-induced decline in neuroplasticity. Collectively, these findings suggest that CSA mitigates depression-like behaviors in mice by inhibiting TLR4/NF-κB-mediated neuroinflammation and enhancing autophagy. This research provides further insights into CSA's mechanisms of action in ameliorating depressive behaviors, offering a scientific foundation for developing CSA-based antidepressants.

2.
World J Gastrointest Surg ; 16(6): 1871-1882, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38983345

ABSTRACT

BACKGROUND: The development of laparoscopic technology has provided a new choice for surgery of gastric cancer (GC), but the advantages and disadvantages of laparoscopic total gastrectomy (LTG) and laparoscopic-assisted total gastrectomy (LATG) in treatment effect and safety are still controversial. The purpose of this study is to compare the efficacy and safety of the two methods in the treatment of GC, and to provide a basis for clinical decision-making. AIM: To compare the efficacy of totally LTG (TLTG) and LATG in the context of radical gastrectomy for GC. Additionally, we investigated the safety and feasibility of the total laparoscopic esophagojejunostomy technique. METHODS: Literature on comparative studies of the above two surgical methods for GC (TLTG group and LATG group) published before September 2022 were searched in the PubMed, Web of Science, Wanfang Database, CNKI, and other Chinese and English databases. In addition, the following search keywords were used: Gastric cancer, total gastrectomy, total laparoscopy, laparoscopy-assisted, esophagojejunal anastomosis, gastric/stomach cancer, total gastrectomy, totally/completely laparoscopic, laparoscopic assisted/laparoscopy assisted/laparoscopically assisted, and esophagojejunostomy/esophagojejunal anastomosis. Review Manager 5.3 software was used for the meta-analysis after two researchers independently screened the literature, extracted the data, and evaluated the risk of bias in the included studies. RESULTS: After layer-by-layer screening, 258 pieces of literature were recovered, and 11 of those pieces were eventually included. This resulted in a sample size of 2421 instances, with 1115 cases falling into the TLTG group and 1306 cases into the LATG group. Age or sex differences between the two groups were not statistically significant, according to the meta-analysis, however the average body mass index of the TLTG group was considerably higher than that of the LATG group (P = 0.01). Compared with those in the LATG group, the incision length in the TLTG group was significantly shorter (P < 0.001), the amount of intraoperative blood loss was significantly lower (P = 0.003), the number of lymph nodes removed was significantly greater (P = 0.04), and the time of first postoperative feeding and postoperative hospitalization were also significantly shorter (P = 0.03 and 0.02, respectively). There were no significant differences in tumor size, length of proximal incisal margin, total operation time, anastomotic time, postoperative pain score, postoperative anal exhaust time, postoperative anastomosis-related complications (including anastomotic fistula, anastomotic stenosis, and anastomotic hemorrhage), or overall postoperative complication rate (P > 0.05). CONCLUSION: TLTG and esophagojejunostomy are safe and feasible. Compared with LATG, TLTG has the advantages of less trauma, less bleeding, easier access to lymph nodes, and faster postoperative recovery, and TLTG is also suitable for obese patients.

3.
Zhongguo Zhong Yao Za Zhi ; 49(6): 1446-1454, 2024 Mar.
Article in Chinese | MEDLINE | ID: mdl-38621928

ABSTRACT

This study investigated the mechanism of Yuxuebi Tablets(YXB) in the treatment of synovial inflammation in rheumatoid arthritis(RA) based on transcriptomic analysis. Transcriptome sequencing technology was employed to analyze the gene expression profiles of joint tissues from normal rats, collagen-induced arthritis(CIA) rats(an RA model), and YXB-treated rats. Common diffe-rentially expressed genes(DEGs) were subjected to Gene Ontology(GO) and Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment analyses. RA synovial inflammation-related target genes were retrieved from the OMIM and GeneCards databases. Venny 2.1 software was used to identify the intersection of YXB target genes and RA synovial inflammation-related target genes, and GO and KEGG enrichment analyses were performed on the intersecting target genes. Immunohistochemistry was used to assess the protein expression levels of the inflammatory factors interleukin-1ß(IL-1ß) and tumor necrosis factor-α(TNF-α) in rat joint tissues. Western blot analysis was employed to measure the expression levels of key proteins in the phosphatidylinositol 3-kinase(PI3K)/protein kinase B(Akt) signaling pathway. A total of 2 058 DEGs were identified by intersecting the genes from the normal group vs model group and the model group vs YXB treatment group. A search in OMIM and GeneCards databases yielded 1 102 RA synovial inflammation-related target genes. After intersecting with the DEGs in the YXB treatment group, 204 intersecting target genes were identified, primarily involving biological processes such as immune response, signal transduction, and inflammatory response; cellular components including plasma membrane, extracellular space, and extracellular region; molecular functions like protein binding, identical protein binding, and receptor binding. These target genes were mainly enriched in signaling pathways such as PI3K/Akt, cytokine-cytokine receptor interaction, and Janus kinase/signal transducer and activator of transcription(JAK/STAT). Western blot results showed that YXB at low, medium, and high doses could significantly inhibit the expression levels of key proteins in the PI3K/Akt signaling pathway in rat joint tissues in a dose-dependent manner. Immunohistochemistry further confirmed these findings, showing that YXB not only suppressed the protein expression levels of the inflammatory factors IL-1ß and TNF-α in the joint synovial tissues of CIA rats, but also inhibited p-Akt protein expression. In conclusion, this study used transcriptomic analysis to uncover the key mechanisms of YXB in inhibiting synovial inflammation and alleviating the progression of RA, with a focus on its role in suppressing the PI3K/Akt signaling pathway.


Subject(s)
Arthritis, Rheumatoid , Proto-Oncogene Proteins c-akt , Rats , Animals , Proto-Oncogene Proteins c-akt/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Synovial Membrane , Inflammation/drug therapy , Inflammation/genetics , Inflammation/metabolism , Gene Expression Profiling/methods
4.
World J Hepatol ; 16(1): 41-53, 2024 Jan 27.
Article in English | MEDLINE | ID: mdl-38313240

ABSTRACT

BACKGROUND: Direct-acting antivirals (DAAs) revolutionized the treatment of chronic hepatitis C virus (HCV)-associated disease achieving high rates of sustained virological response (SVR). However, whether DAAs can reduce the occurrence of hepatocellular carcinoma (HCC) in patients with HCV-associated cirrhosis who are at high risk have not been concluded. AIM: To investigate the effect of DAAs on the occurrence of HCC in patients with HCV-associated cirrhosis after achieving SVR. METHODS: Of 427 inpatients with HCV-associated cirrhosis were enrolled in Tianjin Second People's Hospital from January 2014 to April 2020. 118 patients weren't received antiviral treatment with any reasons named non-antiviral treatment group, and 236 patients obtained from the 309 DAAs treatment patients according to the propensity score matching named DAAs treatment group. Demographic information and laboratory data were collected from baseline and the following up. Kaplan-Meier curve and Log-Rank test were used to compare the incidence and cumulative incidence of HCC between the two groups. Cox proportional risk regression was used to re-evaluate the risk factors for HCC. RESULTS: HCC incidence was 4.68/100PY (95%CI, 3.09-6.81) in the DAAs treatment group, while it was 3.00/100PY (95%CI, 1.50-5.37) in the non-antiviral treatment group, and the relative risk was 1.82 (95%CI, 0.93-3.53, P > 0.05). The incidence of HCC at 12, 24, 36 and 48 months was 3.39%, 6.36%, 8.47% and 10.17% in the DAAs treatment group, and it was 0%, 0%, 3.39% and 9.32% in the non-antiviral treatment group, respectively. Age > 58 [hazard ratio (HR) = 1.089; 95%CI, 1.033-1.147; P = 0.002] and liver stiffness measurement > 27.85 kPa (HR = 1.043; 95%CI, 1.022-1.065; P = 0.000) were risk factors for HCC in all patients (n = 427), and DAAs treatment didn't show protective efficacy. CONCLUSION: DAAs treatment seems failed to reduce the incidence of HCC occurrence in HCV-associated cirrhosis in 48 months, and even increased the incidence of HCC in 36 months.

5.
J Neurosci Res ; 102(1)2024 01.
Article in English | MEDLINE | ID: mdl-38284844

ABSTRACT

Chronic cerebral ischemia (CCI) can lead to vascular cognitive impairment, but therapeutic options are limited. Cognitive-exercise dual-task (CEDT), as a potential rehabilitation intervention, can attenuate cognitive impairment. However, the related mechanisms remain unclear. In this study, 2-vessel occlusion (2-VO) in male SD rats was performed to establish the CCI model. The rats were treated with cognitive, exercise, or CEDT intervention for 21 days. The Morris water maze (MWM) test was used to assess cognitive ability. TUNEL staining was used to detect the neuronal apoptosis. Immunofluorescence, RT-qPCR and Western blot were used to detect the protein or mRNA levels of EphrinA3, EphA4, p-PI3K, and p-Akt. The results showed that CEDT could improve performance in the MWM test, reverse the increased expression of EphrinA3 and EphA4, and the reduced expression of p-PI3K and p-Akt in CCI rats, which was superior to exercise and cognitive interventions. In vitro, oxygenglucose deprivation (OGD) challenge of astrocytes and neuronal cells were used to mimic cerebral ischemia. Immunofluorescence assay revealed that the levels of MAP-2, p-PI3K, and p-Akt were reduced in EphrinA3 overexpressed cells after OGD stimulation. Finally, the knock-down of EphrinA3 by shRNA significantly promoted the recovery of cognitive function and activation of PI3K/Akt after CEDT treatment in CCI rats. In conclusion, our study suggests that CEDT promotes cognitive function recovery after CCI by regulating the signaling axis of EphrinA3/EphA4/PI3K/Akt.


Subject(s)
Brain Ischemia , Phosphatidylinositol 3-Kinases , Male , Animals , Rats , Rats, Sprague-Dawley , Proto-Oncogene Proteins c-akt , Signal Transduction , Cognition
6.
Exp Neurol ; 372: 114617, 2024 02.
Article in English | MEDLINE | ID: mdl-38007209

ABSTRACT

BACKGROUND: The prevalence of vascular cognitive impairment induced by chronic cerebral ischemia (CCI) is increasing year by year. Cognitive-exercise dual-task intervention has shown beneficial effects on improving cognitive performance in ischemic patients. It is well known that the tyrosine kinase ligand-receptor (Ephrin-Eph) system plays an important role in synaptic transmission and that the cAMP/PKA pathway is associated with cognitive function. However, it is unclear whether they are responsible for the dual-task improving cognitive impairment in CCI. METHODS: Bilateral common carotid artery occlusion (BCCAO) in SD rats was used to establish the CCI model. The effects of dual-task and single-task on cognitive function and the expressions of EphrinA3, EphA4, cAMP, and PKA in rats were detected by the novel object recognition (NOR) test, immunofluorescence staining, quantitative real-time polymerase chain reaction (qPCR), and Western blotting (WB), respectively. Overexpression or knockdown of EphrinA3 in astrocytes or rats were constructed by lentivirus infection to verify the effects of EphrinA3/EphA4 on the cAMP/PKA pathway. RESULTS: After dual-task intervention, the discrimination index of rats increased significantly compared with the rats in the CCI group. The expressions of EphrinA3 and EphA4 were decreased, while the expressions of cAMP and PKA were increased. Furthermore, knockdown of EphrinA3 alleviated the trend of CCI-induced cognitive decline in rats and OGD-stimulated cellular damage. It also increased cAMP/PKA expression in hippocampal neurons. CONCLUSION: Cognitive-exercise dual-task can significantly improve the cognitive impairment induced by CCI, and this effect may be better than that of the cognitive or exercise single-task intervention. The improvement may be related to the inhibition of EphrinA3/EphA4, followed by activation of the cAMP/PKA pathway.


Subject(s)
Brain Ischemia , Cognitive Dysfunction , Humans , Rats , Animals , Rats, Sprague-Dawley , Hippocampus/metabolism , Brain Ischemia/complications , Brain Ischemia/metabolism , Cognitive Dysfunction/etiology , Cognitive Dysfunction/metabolism , Cognition
7.
Se Pu ; 41(10): 879-890, 2023 Oct.
Article in Chinese | MEDLINE | ID: mdl-37875410

ABSTRACT

Metal-organic frameworks (MOFs) are a class of porous crystalline materials composed of metal centers or clusters assembled with organic ligands. These materials possess excellent properties, such as large surface areas, high porosities, uniform pore sizes, and diverse structures. Thus, MOFs have been widely applied in various fields, including catalysis, adsorption, sensing, sample pretreatment, and chromatographic separation. The applications of MOFs as stationary phases for chromatographic separation and analysis have attracted considerable attention from the research community in recent years. Compared with traditional chromatographic stationary phases, such as mesoporous silica, nanoparticles, and porous layers, MOFs possess flexible and tunable pore sizes and structures, thereby enabling precise control over their intermolecular interactions. Furthermore, the wide range of functional ligands and topologies of MOFs could potentially facilitate the separation and analysis of complex samples. These unique advantages render MOFs highly suitable for constructing novel chromatographic stationary phases.This article focuses primarily on the construction methods of MOFs as chromatographic stationary phases, and provides an overview of the latest research advancements in their applications in several chromatographic separation techniques such as high performance liquid chromatography (HPLC), gas chromatography (GC), and capillary electrochromatography (CEC). The existing methods for the preparation and construction of MOFs-based chromatographic stationary phases are classified and evaluated. The construction methods for MOFs as stationary phases for HPLC mainly include filling, precursor-doped polymerization, and post-modification. The construction methods for MOFs as stationary phases for GC predominantly include in situ growth, static coating, and dynamic coating. The stationary phases for CEC can be categorized into packed columns, monolithic columns, and open-tubular columns. Compared with monolithic and packed columns, open-tubular CEC (OT-CEC) offers numerous advantages, including a more flexible and convenient preparation method, enhanced compatibility with various separation media, and higher separation efficiency. Consequently, OT-CEC has emerged as an important method for investigating the preparation of stationary phases for CEC. Several methods such as physical adsorption, covalent attachment, and electrostatic interactions have been developed for the preparation and modification of MOFs-based CEC stationary phases, and extensive studies have been conducted to optimize the performance and applications of MOFs in OT-CEC. However, the existing methods for constructing MOFs-based chromatographic stationary phases present certain limitations. Therefore, the selection of the appropriate MOFs, optimization of their preparation methods, and examination of their performance in different separation modes have become the focus of intensive research.This review also summarizes the different analytical targets (e. g., chiral small molecules, biomacromolecules, and nonchiral molecules) and corresponding separation effects achieved using various MOFs-based chromatographic stationary phases. Finally, future studies focusing on the development of MOFs as chromatographic separation media are discussed. Overall, this review provides a valuable reference for the rational construction and practical applications of advanced MOFs-based chromatographic stationary phases.

8.
Brain Res Bull ; 202: 110761, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37714275

ABSTRACT

Aging-related cognitive impairment (ARCI) is rapidly becoming a healthcare priority. However, there is currently no excellent cure for it. Cognitive-exercise dual-task intervention (CEDI) is a promising method to improve ARCI, while the underlying mechanisms remain unclear. Long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) are involved in the onset, development, and rehabilitation of ARCI. This study aimed to investigate the effects of CEDI and the role of regulation of the lncRNA NEAT1/miR-124-3p on the caveolin-1-PI3K/Akt/GSK3ß pathway in CEDI improving cognitive function. Forty 18-month-old natural aging rats were randomly assigned to four groups: exercise training group, cognitive training group, CEDI group, and aging control group, and underwent 12 weeks of intervention. A novel object recognition test was performed to determine the cognitive function, and the hippocampus was separated three days after the behavioral tests for further molecular detection. In an in vitro study, the mouse hippocampal neuronal cell line HT22 was cultured. MiR-124-3p and lncRNA NEAT1 were over-expressed or down-expressed, respectively. The expressions of related proteins, lncRNA, and miRNA were examined by WB and/or qRT-PCR. The results showed that compared with the aging control group, the CEDI group had a higher discrimination index, and significantly decreased the expressions of lncRNA NEAT1, and the protein expressions of caveolin-1 and p-GSK3ß, while significantly increased the expressions of miR-124-3p, and the protein expressions of p-PI3K and p-Akt. Inhibition of the lncRNA NEAT1 could significantly increase the protein expressions of p-PI3K and p-Akt in HT22 cells. Upregulation of miR-124-3p decreased the protein expressions of caveolin-1 and p-GSK3ß, and increased the protein expressions of p-PI3K and p-Akt significantly. Inhibition of miR-124-3p had the opposite effects. Our study demonstrated that CEDI improved cognitive function in aging rats better than a single intervention. The mechanisms of cognitive improvement could be related to the regulation of the lncRNA NEAT1/miR-124-3p on the caveolin-1-PI3K/Akt/GSK3ß pathway.


Subject(s)
Cognitive Dysfunction , MicroRNAs , RNA, Long Noncoding , Animals , Mice , Rats , Aging , Caveolin 1 , Cognition , Cognitive Dysfunction/therapy , Glycogen Synthase Kinase 3 beta , MicroRNAs/genetics , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , RNA, Long Noncoding/genetics
9.
Sci Rep ; 13(1): 16437, 2023 09 30.
Article in English | MEDLINE | ID: mdl-37777593

ABSTRACT

Fasting blood glucose (FBG) and glycosylated hemoglobin (HbA1c) are key indicators reflecting blood glucose control in type 2 diabetes mellitus (T2DM) patients. The purpose of this study is to establish a predictive model for blood glucose changes in T2DM patients after 3 months of treatment, achieving personalized treatment.A retrospective study was conducted on type 2 diabetes mellitus real-world medical data from 4 cities in Sichuan Province, China from January 2015 to December 2020. After data preprocessing, data inputting, data sampling, and feature screening, 16 kinds of machine learning methods were used to construct prediction models, and 5 prediction models with the best prediction performance were screened respectively. A total of 100,000 cases were included to establish the FBG model, and 2,169 cases were established to establish the HbA1c model. The best prediction model both of FBG and HbA1c finally obtained are realized by ensemble learning and modified random forest inputting, the AUC values are 0.819 and 0.970, respectively. The most important indicators of the FBG and HbA1c prediction model were FBG and HbA1c. Medication compliance, follow-up outcome, dietary habits, BMI, and waist circumference also had a greater impact on FBG levels. The prediction accuracy of the models of the two blood glucose control indicators is high and has certain clinical applicability.HbA1c and FBG are mutually important predictors, and there is a close relationship between them.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Glycated Hemoglobin , Blood Glucose , Retrospective Studies , Fasting , Algorithms , Machine Learning
10.
Immun Inflamm Dis ; 11(9): e1018, 2023 09.
Article in English | MEDLINE | ID: mdl-37773714

ABSTRACT

OBJECTIVE: In this study, we investigated the levels of interleukin-1ß (IL-1ß), IL-18, and the NOD-like receptor pyrin domain-containing 3 (NLRP3) inflammasome in patients with premature rupture of membranes (PROMs). METHODS: We selected 60 pregnant women at the Fourth Hospital of Baotou between January 2019 and July 2021. These women were divided into three distinct groups: the preterm PROM group with 20 cases, term PROM (TPROM) group with 20 cases, and a control group with 20 cases consisting of normal full-term pregnancies without PROM. Peripheral blood was collected from all participants. Using enzyme-linked immunosorbent assay, the levels of IL-1 and IL-18 in the plasma were assessed. Additionally, the proportions of NLRP3, apoptosis-associated speck-like protein (ASC), and caspase-1-positive macrophages were also evaluated. RESULTS: The ratios of NLRP3, ASC, IL-1ß, and IL-18 concentrations, along with the presence of caspase-1-positive macrophages, were notably greater in the PROM groups in comparison with the control group (p < .05). In the TPROM group and control group, the proportions of IL-1ß and IL-18 levels were found to be lower than NLRP3, ASC, and caspase-1-positive macrophages levels (p < .05). CONCLUSION: The concentrations of IL-1ß and IL-18, as well as the ratios of NLRP3, ASC, and caspase-1-positive macrophages, were elevated in patients with PROM compared to the control group. This suggests a potential correlation between the excessive activation of NLRP3 and the development of PROM.


Subject(s)
Inflammasomes , NLR Family, Pyrin Domain-Containing 3 Protein , Infant, Newborn , Humans , Female , Pregnancy , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Interleukin-18 , Macrophages/metabolism , Caspase 1/metabolism
11.
Aging Dis ; 2023 Aug 11.
Article in English | MEDLINE | ID: mdl-37611906

ABSTRACT

The risk of developing chronic illnesses and disabilities is increasing with age. To predict and prevent aging, biomarkers relevant to the aging process must be identified. This paper reviews the known molecular, cellular, and physiological biomarkers of aging. Moreover, we discuss the currently available technologies for identifying these biomarkers, and their applications and potential in aging research. We hope that this review will stimulate further research and innovation in this emerging and fast-growing field.

12.
Zhongguo Zhong Yao Za Zhi ; 48(14): 3855-3864, 2023 Jul.
Article in Chinese | MEDLINE | ID: mdl-37475077

ABSTRACT

This paper aims to investigate the intervention effect of Qufeng Gutong Cataplasm(QFGT) on myofascial pain syndrome(MPS) in rats and to preliminarily explain its mechanism from the perspective of improving muscle inflammation and pain. Male SD rats were divided into 6 groups, namely normal group, model group, positive control drug(Huoxue Zhitong Ointment, HXZT) group, and low, medium, and high-dose QFGT groups(75, 150, and 300 mg·d~(-1)). The rat model of MPS was established by striking combined with centrifugation for 8 weeks, during which QFGT and HXZT were used for corresponding intervention. Standard VonFrey fiber was used to evaluate the mechanical pain threshold, and acetone was used to detect the cold pain threshold. The electrophysiological activity of muscle at trigger point was detected, and the electromuscular analysis of trigger point was performed. CatWalk gait analyzer was used to detect pain-induced gait adaptation changes. The hematoxylin-eosin(HE) staining was used to observe the pathological changes in muscle and skin tissues at the trigger point of rats. Immunohistochemistry was used to detect the expression of capsaicin receptor transient receptor potential vanilloid 1(TRPV1) in muscle tissues and interleukin(IL)-33 in skin tissues at the trigger point. The protein expression levels of TRPV1, protein kinase B(Akt), phosphorylated protein kinase B(p-Akt), IL-1ß, and tumor necrosis factor-α(TNF-α) in muscle tissues at the trigger point were detected by Western blot. The results showed that as compared with the model group, the mechanical pain threshold and cold pain threshold of rats in other groups were increased after treatment with QFGT. The spontaneous electromyography(EMG) activity was observed in the model group, but QFGT alleviated the EMG activity in a dose-dependent manner. Gait analysis showed that standing duration, average intensity, swing speed, maximum contact point, maximum contact area, paw print length, paw print width, and paw print area were significantly improved in all QFGT groups. Pathological results showed that the disorder of muscle arrangement at the trigger point was decreased, muscle fiber adhesion and atrophy were reduced, and inflammatory cell infiltration was alleviated after treatment with QFGT. In addition, QFGT and HXZT both inhibited the protein expression of TRPV1, PI3K, Akt, p-Akt, IL-1ß, and TNF-α in the muscle tissues of rats with MPS. However, there was no significant difference in the pathological structure and expression of IL-33 in the treated skin as compared with the normal group. The related results have proved that QFGT can inhibit the release of inflammatory factors by inhibiting the TRPV1/PI3K/Akt signaling pathway in the muscle trigger point of rats with MPS and finally attenuate the atrophy and adhesion of local muscles and inflammatory infiltration, thereby relieving the muscle pain of rats with MPS, and local administration has no skin irritation.


Subject(s)
Myofascial Pain Syndromes , Proto-Oncogene Proteins c-akt , Rats , Male , Animals , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha , Phosphatidylinositol 3-Kinases , Myofascial Pain Syndromes/drug therapy , Pain
13.
Adv Sci (Weinh) ; 10(20): e2206982, 2023 07.
Article in English | MEDLINE | ID: mdl-37150855

ABSTRACT

Hand dysfunctions in Parkinson's disease include rigidity, muscle weakness, and tremor, which can severely affect the patient's daily life. Herein, a multimodal sensor glove is developed for quantifying the severity of Parkinson's disease symptoms in patients' hands while assessing the hands' multifunctionality. Toward signal processing, various algorithms are used to quantify and analyze each signal: Exponentially Weighted Average algorithm and Kalman filter are used to filter out noise, normalization to process bending signals, K-Means Cluster Analysis to classify muscle strength grades, and Back Propagation Neural Network to identify and classify tremor signals with an accuracy of 95.83%. Given the compelling features, the flexibility, muscle strength, and stability assessed by the glove and the clinical observations are proved to be highly consistent with Kappa values of 0.833, 0.867, and 0.937, respectively. The intraclass correlation coefficients obtained by reliability evaluation experiments for the three assessments are greater than 0.9, indicating that the system is reliable. The glove can be applied to assist in formulating targeted rehabilitation treatments and improve hand recovery efficiency.


Subject(s)
Parkinson Disease , Humans , Parkinson Disease/diagnosis , Tremor/diagnosis , Tremor/therapy , Reproducibility of Results , Biomechanical Phenomena , Hand
14.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1343-1351, 2023 Mar.
Article in Chinese | MEDLINE | ID: mdl-37005818

ABSTRACT

The present study investigated the mechanism of artesunate in the treatment of bone destruction in experimental rheumatoid arthritis(RA) based on transcriptomics and network pharmacology. The transcriptome sequencing data of artesunate in the inhibition of osteoclast differentiation were analyzed to obtain differentially expressed genes(DEGs). GraphPad Prism 8 software was used to plot volcano maps and heat maps were plotted through the website of bioinformatics. GeneCards and OMIM were used to collect information on key targets of bone destruction in RA. The DEGs of artesunate in inhibiting osteoclast differentiation and key target genes of bone destruction in RA were intersected by the Venny 2.1.0 platform, and the intersection target genes were analyzed by Gene Ontology(GO)/Kyoto Encyclopedia of Genes and Genomes(KEGG) enrichment. Finally, the receptor activator of nuclear factor-κB(RANKL)-induced osteoclast differentiation model and collagen-induced arthritis(CIA) model were established. Quantitative real time polymerase chain reaction(q-PCR), immunofluorescence, and immunohistochemistry were used to verify the pharmacological effect and molecular mechanism of artesunate in the treatment of bone destruction in RA. In this study, the RANKL-induced osteoclast differentiation model in vitro was established and intervened with artesunate, and transcriptome sequencing data were analyzed to obtain 744 DEGs of artesunate in inhibiting osteoclast differentiation. A total of 1 291 major target genes of bone destruction in RA were obtained from GeneCards and OMIM. The target genes of artesunate in inhibiting osteoclast differentiation and the target genes of bone destruction in RA were intersected to obtain 61 target genes of artesunate against bone destruction in RA. The intersected target genes were analyzed by GO/KEGG enrichment. According to the results previously reported, the cytokine-cytokine receptor interaction signaling pathway was selected for experimental verification. Artesunate intervention in the RANKL-induced osteoclast differentiation model showed that artesunate inhibited CC chemokine receptor 3(CCR3), CC chemokine receptor 1(CCR1) and leukemia inhibitory factor(LIF) mRNA expression in osteoclasts in a dose-dependent manner compared with the RANKL-induced group. Meanwhile, the results of immunofluorescence and immunohistochemistry showed that artesunate could dose-dependently reduce the expression of CCR3 in osteoclasts and joint tissues of the CIA rat model in vitro. This study indicated that artesunate regulated the CCR3 in the cytokine-cytokine receptor interaction signaling pathway in the treatment of bone destruction in RA and provided a new target gene for the treatment of bone destruction in RA.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Rats , Animals , Arthritis, Experimental/drug therapy , Artesunate/pharmacology , Artesunate/therapeutic use , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/genetics , Transcriptome , Network Pharmacology , Osteoclasts , Receptors, Cytokine/genetics , Receptors, Cytokine/metabolism , Receptors, Cytokine/therapeutic use
15.
J Pharm Biomed Anal ; 228: 115317, 2023 May 10.
Article in English | MEDLINE | ID: mdl-36868026

ABSTRACT

As an effective treatment for acute gouty arthritis and cardiovascular disease, colchicine is also a toxic alkaloid and may cause poisoning or even death in overdose. The study of colchicine elimination and the diagnosis of poisoning etiology need the rapid and accurate quantitative analysis method in biological matrix. An analytical method was developed for colchicine in plasma and urine by in-syringe dispersive solid phase extraction (DSPE) followed by liquid chromatography-triple quadrupole mass spectrometry (LC-MS/MS). Sample extraction and protein precipitation were proceeded with acetonitrile. The extract was cleaned by in-syringe DSPE. An XBridge™ BEH C18 column(100 mm × 2.1 mm, 2.5 µm)was used to separate colchicine by gradient elution with mobile phase of 0.01% (v/v) ammonia-methanol. The amount and filling sequence of magnesium sulfate (MgSO4) and primary secondary amine (PSA) suitable for in-syringe DSPE were studied. Scopolamine was screened as the quantitative internal standard (IS) for colchicine analysis according to the consistency of recovery rate, chromatographic retention time and matrix effects. The limits of detection for colchicine in plasma and urine were both 0.06 ng mL-1 and the limits of quantitation were both 0.2 ng mL-1. The linear range was 0.04 - 20 ng mL-1 (Equivalent to 0.2-100 ng mL-1 in plasma or urine) with a correlation coefficient r > 0.999. By IS calibration, the average recoveries at three spiking levels in plasma and urine were 95.3-102.68% and 93.9-94.8% with the relative standard deviations (RSDs) of 2.9-5.7% and 2.3-3.4%, respectively. The matrix effects, stability, dilution effects and carryover for determination of colchicine in plasma and urine were also evaluated. The elimination of colchicine within 72-384 h post-ingestion was studied for a poisoning patient with the doses of 1 mg d-1 for 39 days and then 3 mg d-1 for 15 days).


Subject(s)
Colchicine , Tandem Mass Spectrometry , Humans , Chromatography, Liquid/methods , Tandem Mass Spectrometry/methods , Syringes , Solid Phase Extraction , Chromatography, High Pressure Liquid/methods
16.
Biomarkers ; 28(5): 409-415, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37000536

ABSTRACT

OBJECTIVE: This study aimed to investigate the significance of miRNA expression levels in peripheral blood lymphocytes of patients clinically diagnosed with pulmonary tuberculosis. METHOD: Pulmonary tuberculosis-related datasets in the Gene Expression Omnibus (GEO) database were analyzed, and DE-miRNAs were screened for Gene Ontology (GO) analysis and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment to construct a DE-miRNA-DE-mRNA network. The peripheral blood lymphocytes of 10 patients with pulmonary tuberculosis, 10 patients with rifampicin-resistant tuberculosis and 10 healthy volunteers were selected for validation of RNA expression levels. qRT-PCR was done to verify the expression of DE-miRNA, and western blotting was done to check the expression levels of genes of associated pathways. RESULTS: Differential expression of miR-660 was found in pulmonary tuberculosis through data analysis and literature mining. The differential expression was also confirmed by qRT-PCR in samples from patients and healthy controls. The expression of miR-660 was significantly upregulated (p < 0.01) in patients with pulmonary tuberculosis and rifampicin-resistant pulmonary tuberculosis compared with the healthy controls. According to western blotting results, the expression levels of P-NF-κB and AKT in patients with pulmonary tuberculosis and NF-κB, P-NF-κB, AKT and p-AKT in patients with rifampicin-resistant tuberculosis were significantly upregulated (p < 0.01). CONCLUSION: The high expression levels of miR-660 may activate the AKT/NF-κB signalling pathway and has the potential to serve as a potential biomarker for the diagnosis of pulmonary tuberculosis.


Subject(s)
MicroRNAs , Tuberculosis, Pulmonary , Humans , NF-kappa B , Proto-Oncogene Proteins c-akt/genetics , Rifampin/pharmacology , Gene Expression Profiling , Tuberculosis, Pulmonary/diagnosis , Tuberculosis, Pulmonary/genetics , Lymphocytes/metabolism
17.
J Alzheimers Dis ; 92(1): 195-208, 2023.
Article in English | MEDLINE | ID: mdl-36710678

ABSTRACT

BACKGROUND: Alzheimer's disease (AD) disturbs many patients and family. However, little progress has been made in finding effective treatments. Given AD is a multifactorial disease, luteolin and exercise combination therapy may be more effective than monotherapy. OBJECTIVE: To explore the therapeutic effect and underlying mechanisms of luteolin and exercise combination therapy in AD treatment. METHODS: This study utilized a validated mouse model of AD by bilateral injection of amyloid-ß (Aß)1-42 oligomers into the CA1 region of the hippocampus. By combining with animal behavioral test, thioflavin T detection, immunofluorescence and western blot test, the cognitive-enhancing effects of luteolin and exercise combination therapy and the underlying mechanisms were investigated. RESULTS: Luteolin (100 mg/kg/d) combined with exercise could significantly improve the performance of AD model mice in novel object recognition test, and the improvement was greater than that of monotherapy. Further experiments showed that luteolin and exercise alone or in combination could reverse the increase of Aß content, the activation of astrocytes and microglia, and the decrease of the level of autophagy in hippocampus and cortex in AD model induced by Aß1-42 oligomers. While the combination therapy involved more intact hippocampal and cortical areas, with greater degree of changes. CONCLUSION: Luteolin and exercise combination therapy prevented Aß1-42 oligomers-induced cognitive impairment, possibly by decreasing neuroinflammation and enhancing autophagy. The luteolin and exercise combination therapy may be a useful therapeutic option for preventing and/or delaying the progression of memory dysfunction of AD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Mice , Animals , Alzheimer Disease/drug therapy , Luteolin/pharmacology , Neuroinflammatory Diseases , Amyloid beta-Peptides/metabolism , Hippocampus/metabolism , Autophagy , Disease Models, Animal
18.
Dev Neurorehabil ; 26(2): 71-88, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36659872

ABSTRACT

Children with cerebral palsy (CP) are faced with long-term dysfunction. The International Classification of Functioning, Disability and Health for Children and Youth (ICF-CY) has been proposed but the complicated procedure limits the feasibility of clinical application and the exploration of health degrees. This study was aimed to establish a Mokken scale based on the ICF-CY for CP, and then to estimate psychometric properties through the derived Rasch model. 150 children with CP were assessed by the categories of "b" and "d" components in the core set. The binarized data was screened by the Mokken scale analysis and utilized for generating a reliable Rasch model. The validity of the final model was checked by the correlation between person ability, Gross Motor Function Classification System (GMFCS) and total scores. Using the Mokken scale to guide Rasch modeling, we can parameterize the properties of ICF-CY and realize the simple assessment of person abilities for children with CP.


Subject(s)
Cerebral Palsy , Disabled Persons , Adolescent , Child , Humans , Disability Evaluation , International Classification of Functioning, Disability and Health , Psychometrics
19.
Brain Behav Immun ; 107: 76-86, 2023 01.
Article in English | MEDLINE | ID: mdl-36198341

ABSTRACT

Current treatments for chronic pain are unsatisfactory, therefore, new therapeutics are urgently needed. Our previous study indicated that KATP channel openers have analgesic effects, but the underlying mechanism has not been elucidated. We speculated that KATP channel openers might increase suppressor of cytokine signaling (SOCS)-3 expression to induce inflammatory tolerance and attenuate chronic pain. Postoperative pain was induced by plantar incision to establish a chronic pain model. Growth arrest-specific 6 (Gas6)-/- and Axl-/- mice were used for signaling studies. The microglia cell line BV-2 was cultured for the in vitro experiments. The KATP channel opener significantly attenuated incision-induced mechanical allodynia in mice associated with the upregulated expression of SOCS3. Opening KATP channels induced the expression of SOCS3 in the Gas6/Axl signaling pathway in microglia, inhibited incision-induced mechanical allodynia by activating the Gas6/Axl-SOCS3 signaling pathway, and induced inflammatory tolerance to relieve neuroinflammation and postoperative pain. We demonstrated that opening of the KATP channel opening activated Gas6/Axl/SOCS3 signaling to induce inflammatory tolerance and relieve chronic pain. We explored a new target for anti-inflammatory and analgesic effects by regulating the innate immune system and provided a theoretical basis for clinical preemptive analgesia.


Subject(s)
Chronic Pain , Animals , Mice , Chronic Pain/prevention & control , Pain, Postoperative , Adenosine Triphosphate
20.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-960921

ABSTRACT

ObjectiveTo identify the functions of the AP2/ERF family members in Pinellia ternata and promote the genetic improvement of P. ternata varieties. MethodWe identified and conducted a systematic bioinformatics analysis of the AP2/ERF family member genes in P. ternata based on the three generations of transcriptome data. Real-time polymerase Chain reaction (Real-time) PCR was employed to determine the expression pattern of AP2/ERF genes in different tissues and under different stress conditions. ResultA total of eight full-length AP2/ERF family members were identified from the transcriptome data, which were classified into three sub-gene families: AP2, ERF, and DREB. The deduced AP2/ERF proteins in P. ternata had the length of 251-512 aa, the theoretical pI of 5.29-11.72, the instability index of 45.90-82.41, subcellular localization in the nucleus, and conserved domains and motifs. AP2/ERF genes were expressed in different tissues of P. ternata, with high expression levels in the leaf. The stress response experiments showed that PtERF1 mainly responded to NaCl stress. The expression of PtERF2 and PtERF4 was significantly up-regulated under low temperature and polyethylene glycol (PEG)-simulated stress. PtERF3 responded to both low temperature and NaCl stress. The expression of PtERF5 was induced by high temperature, low temperature, NaCl and PEG stress. The expression of PtERF7 was up-regulated under high temperature, while that of PtERF8 under low temperature. ConclusionThe AP2/ERF genes in P. ternata can respond to stress and have the potential functions of regulating photosynthesis and improving root stress resistance.

SELECTION OF CITATIONS
SEARCH DETAIL
...