ABSTRACT
OBJECTIVE: Immunotherapy has been proven to improve the prognosis of patients with advanced malignancy but has shown limited efficacy in patients with Colorectal Cancer (CRC). Increasing evidence suggests that butyrate, a bacterial metabolite, enhances the efficacy of cancer therapies by modulating immune responses. Here, the effect and the mechanism of butyrate on anti-PD-L1 therapy were investigated in CRC. METHODS: The expression of PD-L1 and STAT1, and the lysine acetylation of STAT1 in CRC cells were observed after treatment with butyrate (2, 5, and 10 mM) for 24h or butyrate (5 mM) for 8, 16, and 24h. Site-directed mutations of STAT1 (K410R or K413R) were introduced to determine the role of STAT1 acetylation in modulating PD-L1 expression. The effect of butyrate on the cytotoxicity of CD8+ T-cells against CRC cells with or without PD-L1 overexpression was explored in vitro and in vivo. RESULTS: Butyrate could suppress IFN-γ-induced PD-L1 up-regulation in CRC cells in a dose- and time-dependent way. Butyrate promoted the lysine acetylation of STAT1 to reduce STAT1 expression. Non-acetylated mutant STAT1 not only ameliorated butyrate-induced suppression of lysine acetylation and nuclear translocation of STAT1 but also blocked the effect of butyrate on PD-L1. Butyrate attenuated the IFN-γ-induced impairment of CD8+ T-cell cytotoxicity against CRC cells. Meanwhile, butyrate suppressed CRC tumor growth by enhancing CD8+ T-cell infiltration. However, directly overexpressing PD-L1 in CRC cells could abolish the effect of butyrate. CONCLUSION: Butyrate strengthens the immune response to CRC cells by suppressing PD-L1 expression via acetylation of STAT1.
Subject(s)
B7-H1 Antigen , Colorectal Neoplasms , Humans , B7-H1 Antigen/genetics , B7-H1 Antigen/metabolism , Butyrates/pharmacology , Butyrates/metabolism , Lysine/metabolism , CD8-Positive T-Lymphocytes , Cell Line, Tumor , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , STAT1 Transcription Factor/metabolismABSTRACT
Abstract Objective Immunotherapy has been proven to improve the prognosis of patients with advanced malignancy but has shown limited efficacy in patients with Colorectal Cancer (CRC). Increasing evidence suggests that butyrate, a bacterial metabolite, enhances the efficacy of cancer therapies by modulating immune responses. Here, the effect and the mechanism of butyrate on anti-PD-L1 therapy were investigated in CRC. Methods The expression of PD-L1 and STAT1, and the lysine acetylation of STAT1 in CRC cells were observed after treatment with butyrate (2, 5, and 10 mM) for 24h or butyrate (5 mM) for 8, 16, and 24h. Site-directed mutations of STAT1 (K410R or K413R) were introduced to determine the role of STAT1 acetylation in modulating PD-L1 expression. The effect of butyrate on the cytotoxicity of CD8+ T-cells against CRC cells with or without PD-L1 overexpression was explored in vitro and in vivo. Results Butyrate could suppress IFN-γ-induced PD-L1 up-regulation in CRC cells in a dose- and time-dependent way. Butyrate promoted the lysine acetylation of STAT1 to reduce STAT1 expression. Non-acetylated mutant STAT1 not only ameliorated butyrate-induced suppression of lysine acetylation and nuclear translocation of STAT1 but also blocked the effect of butyrate on PD-L1. Butyrate attenuated the IFN-γ-induced impairment of CD8+ T-cell cytotoxicity against CRC cells. Meanwhile, butyrate suppressed CRC tumor growth by enhancing CD8+ T-cell infiltration. However, directly overexpressing PD-L1 in CRC cells could abolish the effect of butyrate. Conclusion Butyrate strengthens the immune response to CRC cells by suppressing PD-L1 expression via acetylation of STAT1.