Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Inhal Toxicol ; 24(6): 343-55, 2012 May.
Article in English | MEDLINE | ID: mdl-22564093

ABSTRACT

CONTEXT: Particulate matter (PM) has been identified as a major environmental pollutant causing severe health problems. Large amounts of the harmful particulate matter (PM) are emitted from residential wood combustion, but the toxicological properties of wood combustion particles are poorly known. OBJECTIVE: To investigate chemical and consequent toxicological characteristics of PM(1) emitted from different phases of batch combustion in four heating appliances. MATERIALS AND METHODS: Mouse RAW264.7 macrophages and human BEAS-2B bronchial epithelial cells were exposed for 24 h to different doses (15-300 µg/mL) of wood combustion particles. After the exposure, cytotoxicity, genotoxicity, production of the inflammatory mediators (TNF-α and MIP-2) and effects on the cell cycle were assessed. Furthermore, the detected toxicological responses were compared with the chemical composition of PM(1) samples including PAHs, metals and ions. RESULTS: All the wood combustion samples exerted high cytotoxicity, but only moderate inflammatory activity. The particles emitted from the inefficient phase of batch combustion in the sauna stove (SS) induced the most extensive cytotoxic and genotoxic responses in mammalian cells. Polycyclic aromatic hydrocarbons (PAHs) and other organic compounds in PM(1) samples might have contributed to these effects. Instead, water-soluble metals seemed to participate in the cytotoxic responses triggered by the particles from more efficient batch combustion in the masonry heaters. Overall, the toxicological responses were decreased when the combustion phase was more efficient. CONCLUSION: Efficiency of batch combustion plays a significant role in the harmfulness of PM even under incomplete wood combustion processes.


Subject(s)
Air Pollutants/toxicity , Mutagens/toxicity , Particulate Matter/toxicity , Wood , Air Pollutants/analysis , Animals , Carbon/analysis , Cell Line , Cell Survival/drug effects , Chemokine CXCL2/metabolism , DNA Damage , Epithelial Cells/drug effects , Epithelial Cells/metabolism , Humans , Macrophages/drug effects , Macrophages/metabolism , Metals/analysis , Mice , Mutagens/analysis , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Tumor Necrosis Factor-alpha/metabolism
2.
Anal Bioanal Chem ; 401(10): 3183-95, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21960254

ABSTRACT

Several studies have shown that combustion-derived fine particles cause adverse health effects. Previous toxicological studies on combustion-derived fine particles have rarely involved multiple endpoints and a detailed characterization of chemical composition. In this study, we developed a novel particle sampling system for toxicological and chemical characterization (PSTC), consisting of the Dekati Gravimetric Impactor (DGI) and a porous tube diluter. Physico-chemical and toxicological properties of the particles emitted from various combustion sources were evaluated in two measurement campaigns. First, the DGI was compared with the High-Volume Cascade Impactor (HVCI) and to the Dekati Low-Pressure Impactor (DLPI), using the same dilution system and the same sampling conditions. Only small differences were observed in the mass size distributions, total particulate matter (PM), and particulate matter with diameter smaller than 1 um (PM(1)) concentrations and geometric mass mean diameters (GMMD) between these three impactors. Second, the PSTC was compared with the HVCI sampling system, which has been optimal for collection of particulate samples for toxicological and chemical analyses. Differences were observed in the mass size distributions, total PM and PM(1) emissions, and GMMDs, probably due to the different sampling and dilution methods as well as different sampling substrates which affected the behavior of semi-volatile and volatile organic compounds. However, no significant differences were detected in the in vitro measurements of cytotoxicity between the samples collected with the PSTC and the HVCI systems. In measurements of genotoxicity, significant differences between the two sampling systems were seen only with the particles emitted from the sauna stove. In conclusion, due to compact size, PSTC is an applicable method for use in particle sampling as part of the toxicological and chemical characterization of particulate emissions from different combustion sources. It offers some advantages compared to the previously used high-volume sampling methods including compactness for field measurements, simple preparation of sample substrates and high extraction efficiency.


Subject(s)
Air Pollutants/chemistry , Analytic Sample Preparation Methods/methods , Particulate Matter/chemistry , Vehicle Emissions/analysis , Air Pollutants/toxicity , Analytic Sample Preparation Methods/instrumentation , Animals , Cell Cycle/drug effects , Cell Line , Cell Survival/drug effects , Environmental Monitoring , Humans , Mice , Mutagenicity Tests , Particulate Matter/toxicity
3.
Inhal Toxicol ; 22 Suppl 2: 48-58, 2010 Dec.
Article in English | MEDLINE | ID: mdl-21029031

ABSTRACT

There is increasing demand for renewable energy and the use of biodiesel in traffic is a major option when implying this increment. We investigated the toxicological activities of particulate emissions from a nonroad diesel engine, operated with conventional diesel fuel (EN590), and two biodiesels: rapeseed methyl ester (RME) and hydrotreated fresh vegetable oil (HVO). The engine was operated with all fuels either with or without catalyst (DOC/POC). The particulate matter (PM(1)) samples were collected from the dilution tunnel with a high-volume cascade impactor (HVCI). These samples were characterized for ions, elements, and polycyclic aromatic hydrocarbon (PAH) compounds. Mouse RAW264.7 macrophages were exposed to the PM samples for 24 h. Inflammatory mediators, (TNF-α and MIP-2), cytotoxicity, genotoxicity, and oxidative stress (reactive oxygen species [ROS]) were measured. All the samples displayed mostly dose-dependent toxicological activity. EN590 and HVO emission particles had larger inflammatory responses than RME-derived particles. The catalyst somewhat increased the responses per the same mass unit. There were no substantial differences in the cytotoxic responses between the fuels or catalyst use. Genotoxic responses by all the particulate samples were at same level, except weaker for the RME sample with catalyst. Unlike other samples, EN590-derived particles did not significantly increase ROS production. Catalyst increased the oxidative potential of the EN590 and HVO-derived particles, but decreased that with RME. Overall, the use of biodiesel fuels and catalyst decreased the particulate mass emissions compared with the EN590 fuel. Similar studies with different types of diesel engines are needed to assess the potential benefits from biofuel use in engines with modern technologies.


Subject(s)
Air Pollutants/toxicity , Biofuels/toxicity , Gasoline/toxicity , Particulate Matter/toxicity , Polycyclic Aromatic Hydrocarbons/toxicity , Vehicle Emissions/toxicity , Animals , Catalysis , Cell Line , Chemokine CXCL2/metabolism , Comet Assay , Cytotoxicity Tests, Immunologic , Inflammation/metabolism , Mice , Mutagenicity Tests , Oxidative Stress , Particulate Matter/analysis , Polycyclic Aromatic Hydrocarbons/analysis , Reactive Oxygen Species/metabolism , Tumor Necrosis Factor-alpha/metabolism
4.
Inhal Toxicol ; 21(10): 857-67, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19459771

ABSTRACT

Oxidative stress has been proposed to be one mechanism behind the adverse health outcomes associated with living in a damp indoor environment. In the present study, the capability of damp building-related microbes Streptomyces californicus and Stachybotrys chartarum to induce oxidative stress was evaluated in vitro. In addition, the role of oxidative stress in provoking the detected cytotoxic, genotoxic, and inflammatory responses was studied by inhibiting the production of reactive oxygen species (ROS) using N-acetyl-l-cysteine (NAC). RAW264.7 macrophages were exposed in a dose- and time-dependent manner to the spores of co-cultivated S. californicus and S. chartarum, to their separately cultivated spore-mixture, or to the spores of these microbes alone. The intracellular peroxide production and cytotoxicity were measured by flow cytometric analysis, nitric oxide production was analyzed by the Griess method, DNA damage was determined by the comet assay, and cytokine production was measured by an immunochemical ELISA (enzyme-linked immunosorbent assay). All the studied microbial exposures triggered oxidative stress and subsequent cellular damage in RAW264.7 macrophages. The ROS scavenger, NAC, prevented growth arrest, apoptosis, DNA damage, and cytokine production induced by the co-culture since it reduced the intracellular level of ROS within macrophages. In contrast, the DNA damage and cell cycle arrest induced by the spores of S. californicus alone could not be prevented by NAC. Bioaerosol-induced oxidative stress in macrophages may be an important mechanism behind the frequent respiratory symptoms and diseases suffered by residents of moisture damaged buildings. Furthermore, microbial interactions during co-cultivation stimulate the production of highly toxic compound(s) which may significantly increase oxidative damage.


Subject(s)
Immunotoxins/toxicity , Mutagens/toxicity , Oxidative Stress/drug effects , Sick Building Syndrome/microbiology , Stachybotrys/metabolism , Streptomyces/metabolism , Acetylcysteine/metabolism , Animals , Cell Cycle/drug effects , Cell Line , Cell Survival/drug effects , Comet Assay , Cytokines/biosynthesis , DNA/biosynthesis , DNA/genetics , Dogs , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Lipid Peroxidation/drug effects , Macrophages/drug effects , Macrophages/immunology , Reactive Oxygen Species/metabolism , Spores, Bacterial/chemistry , Spores, Bacterial/metabolism , Stachybotrys/immunology , Streptomyces/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...