Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 7(1): 10087, 2017 08 30.
Article in English | MEDLINE | ID: mdl-28855669

ABSTRACT

Graphene nanoplatelets (GNPs) have emerged as one of the most promising filler materials for improving the tribological performance of ceramic composites due to their outstanding solid lubricant properties as well as mechanical and thermal stability. Yet, the addition of GNPs has so far enabled only a very limited improvement in the tribological properties of ceramics, particularly concerning the reduction of their friction coefficient. This is most likely due to the challenges of achieving a continuous lubricating and protecting tribo-film through a high GNP coverage of the exposed surfaces. Here we demonstrate that this can be achieved by efficiently increasing the exfoliation degree of GNPs down to the few-layer (FL) range. By employing FL-GNPs as filler material, the wear resistance of Si3N4 composites can be increased by more than twenty times, the friction coefficient reduced to nearly its half, while the other mechanical properties are also preserved or improved. Confocal Raman spectroscopy measurements revealed that at the origin of the spectacular improvement of the tribological properties is the formation of a continuous FL- GNP tribo-film, already at 5 wt% FL-GNP content.

2.
J Nanosci Nanotechnol ; 12(11): 8775-8, 2012 Nov.
Article in English | MEDLINE | ID: mdl-23421284

ABSTRACT

The dispersion properties of single- and multi-walled carbon nanotubes as well as mechanically exfoliated few layer graphene flakes within the silicon nitride ceramic matrix have been investigated. Small angle neutron scattering experiments have been employed to gain information on the dispersion of the nano-scale carbon fillers throughout the entire volume of the samples. The neutron scattering data combined with scanning electron microscopy revealed strikingly different distribution patterns for different types of carbon nanostructures. The scattering intensities for single wall carbon nanotubes (SWCNTs) reveal a decay exponent characteristic to surface fractals, which indicate that the predominant part of nanotubes can be found in loose networks wrapping the grains of the polycrystalline matrix. By contrast, multi wall carbon nanotubes (MWCNTs) were found to be present mainly in the form of bulk aggregate structures, while few-layer graphene (FLG) flakes have been individually dispersed within the host matrix, under the very same preparation and processing conditions.


Subject(s)
Ceramics/chemistry , Crystallization/methods , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/ultrastructure , Silicon Compounds/chemistry , Macromolecular Substances/chemistry , Materials Testing , Molecular Conformation , Particle Size , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...