Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 310(5748): 657-60, 2005 Oct 28.
Article in English | MEDLINE | ID: mdl-16179434

ABSTRACT

A major challenge in predicting Earth's future climate state is to understand feedbacks that alter greenhouse-gas forcing. Here we synthesize field data from arctic Alaska, showing that terrestrial changes in summer albedo contribute substantially to recent high-latitude warming trends. Pronounced terrestrial summer warming in arctic Alaska correlates with a lengthening of the snow-free season that has increased atmospheric heating locally by about 3 watts per square meter per decade (similar in magnitude to the regional heating expected over multiple decades from a doubling of atmospheric CO2). The continuation of current trends in shrub and tree expansion could further amplify this atmospheric heating by two to seven times.


Subject(s)
Greenhouse Effect , Alaska , Arctic Regions , Picea , Seasons , Trees
2.
Nature ; 411(6837): 546-7, 2001 May 31.
Article in English | MEDLINE | ID: mdl-11385559

ABSTRACT

The warming of the Alaskan Arctic during the past 150 years has accelerated over the last three decades and is expected to increase vegetation productivity in tundra if shrubs become more abundant; indeed, this transition may already be under way according to local plot studies and remote sensing. Here we present evidence for a widespread increase in shrub abundance over more than 320 km of Arctic landscape during the past 50 years, based on a comparison of historic and modern aerial photographs. This expansion will alter the partitioning of energy in summer and the trapping and distribution of snow in winter, as well as increasing the amount of carbon stored in a region that is believed to be a net source of carbon dioxide.


Subject(s)
Climate , Plants , Arctic Regions
SELECTION OF CITATIONS
SEARCH DETAIL
...