Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Neurol ; 377: 114810, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38714284

ABSTRACT

Most projection neurons, including retinal ganglion cells (RGCs), undergo cell death after axotomy proximal to the cell body. Specific RGC subtypes, such as ON-OFF direction selective RGCs (ooDSGCs) are particularly vulnerable, whereas intrinsically photosensitive RGCs (ipRGCs) exhibit resilience to axonal injury. Through the application of RNA sequencing and fluorescent in situ hybridization, we show that the expression of chloride intracellular channel protein 1 and 4 (Clic1 and Clic4) are highly increased in the ooDSGCs after axonal injury. Toward determining a gene's role in RGCs, we optimized the utility and efficacy of adenovirus associated virus (AAV)-retro expressing short hairpin RNA (shRNA). Injection of AAV2-retro into the superior colliculus results in efficient shRNA expression in RGCs. Incorporating histone H2B gene fused with mGreenLantern results in bright nuclear reporter expression, thereby enhancing single RGC identification and cell quantitation in live retinas. Lastly, we demonstrate that AAV2-retro mediated knockdown of both Clic1 and Clic4 promotes RGC survival after injury. Our findings establish an integrated use of AAV2-retro-shRNA and real-time fundus imaging and reveal CLICs' contribution to RGC death.


Subject(s)
Cell Death , Chloride Channels , Dependovirus , Retinal Ganglion Cells , Animals , Retinal Ganglion Cells/metabolism , Dependovirus/genetics , Chloride Channels/genetics , Chloride Channels/metabolism , Cell Death/physiology , Mice , Mice, Inbred C57BL , Male , RNA, Small Interfering/genetics
2.
PLoS Biol ; 20(9): e3001830, 2022 09.
Article in English | MEDLINE | ID: mdl-36174052

ABSTRACT

Neurons lack the ability to regenerate after injury. A new Preregistered Article in PLOS Biology finds that pharmacologically boosting regenerative capacity long after injury in mice, together with an enriched animal environment, promotes axonal and synaptic plasticity.


Subject(s)
Spinal Cord Injuries , Spinal Cord , Animals , Axons/physiology , Mice , Neuronal Plasticity/physiology , Neurons/physiology
3.
Front Cell Dev Biol ; 10: 956279, 2022.
Article in English | MEDLINE | ID: mdl-36035999

ABSTRACT

Retinal ganglion cells (RGCs) are a heterogeneous population of neurons that function synchronously to convey visual information through the optic nerve to retinorecipient target areas in the brain. Injury or disease to the optic nerve results in RGC degeneration and loss of visual function, as few RGCs survive, and even fewer can be provoked to regenerate their axons. Despite causative insults being broadly shared, regeneration studies demonstrate that RGC types exhibit differential resilience to injury and undergo selective survival and regeneration of their axons. While most early studies have identified these RGC types based their morphological and physiological characteristics, recent advances in transgenic and gene sequencing technologies have further enabled type identification based on unique molecular features. In this review, we provide an overview of the well characterized RGC types and identify those shown to preferentially survive and regenerate in various regeneration models. Furthermore, we discuss cellular characteristics of both the resilient and susceptible RGC types including the combinatorial expression of different molecular markers that identify these specific populations. Lastly, we discuss potential molecular mechanisms and genes found to be selectively expressed by specific types that may contribute to their reparative capacity. Together, we describe the studies that lay the important groundwork for identifying factors that promote neural regeneration and help advance the development of targeted therapy for the treatment of RGC degeneration as well as neurodegenerative diseases in general.

4.
Transl Vis Sci Technol ; 10(8): 8, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34251423

ABSTRACT

Purpose: To create a mouse traumatic optic neuropathy (TON) model that is reproducible, reliable, and easy to manipulate with high specificity to retinal ganglion cell (RGC) layer and no mortality. The model will be useful for understanding the pathophysiology of retinal ganglion cell death and for testing neuroprotective therapeutics. Methods: An Nd:YAG laser was used to generate focal photodisruptive retinal damage. Noninvasive in vivo ophthalmologic imaging technologies such as optical coherence tomography (OCT) and confocal laser scanning ophthalmoscopy (CSLO) were used to longitudinally track the retinal nerve fiber layer (RNFL) thickness and RGC number change, respectively. Immunostaining and pattern electroretinography (PERG) were also used to evaluate structure and functional change after laser injury. Results: Our ND:YAG laser generates a concussive photodisruptive laser shockwave force which induces focal RGC death in the targeted area. We observed a correlative decrease in RGCs number, RNFL, and PERG function of RGC in the laser zone. The pattern of RNFL thinning and RGC soma loss correlates with the pattern and amount of fluorescence loss on OCT and CSLO images, respectively. The ND:YAG laser does not cause any damage to other layers in the retina nor any side effects including changes in intraocular pressure, corneal edema, and calcification or mortality (which has been observed in other TON models). Conclusions: We have created a new and novel RGC TON death model that confers no mortality and produces a quantifiable decrease in RGC number and function. The laser targeted regions of the retina correlate with both in vivo imaging by OCT and CSLO and histologically with regions of RGC loss without ophthalmic side effects. Translational Relevance: This laser-based TON injury model is simple to implement, is reproducible, and is useful for determining the molecular and cellular pathophysiology of TON and RGC death and for testing neuroprotective therapeutics.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Animals , Lasers , Mice , Tomography, Optical Coherence , Tonometry, Ocular
5.
Mol Neurobiol ; 57(2): 698-709, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31463876

ABSTRACT

We used genetic naturally occurring glaucoma (DBA/2J) and experimentally induced optic nerve crush (ONC) as models to study gamma-synuclein expression change in retinal ganglion cells and optic nerves. Gene chip microarray analysis demonstrated downregulated expression of the gamma-synuclein gene in DBA/2J mice as they developed age-associated glaucoma with concomitant with retinal ganglion cell loss. Real-time PCR, Western blot, and immunostaining results confirmed that the expression of gamma-synuclein at the mRNA and protein level was significantly reduced in the retinas and optic nerves of aged DBA/2J mice. We also observed similar reduced expression of gamma-synuclein in the retinas from mice after optic nerve crush. Surprisingly, the expression of gamma-synuclein was increased in optic nerves after crush. This is the first study demonstrating gamma-synuclein-expressing cells accumulate in the optic nerve crush site. Gamma-synuclein was found in axons colocalizing largely with neurofilaments in control mice without injury but was found inside cells within the scar in the crush site. Gamma-synuclein expression is predominantly expressed at the optic nerve crush site associated with CD68+ macrophage-like cells, not GFAP-expressing astroglial cells, suggesting gamma-synuclein expression is associated with glial scar formation inhibitory to optic nerve regeneration. We propose gamma-synuclein labels macrophage-like cells recruited to the site of acute optic nerve injury.


Subject(s)
Apoptosis , Optic Nerve/pathology , Retinal Ganglion Cells/metabolism , Retinal Ganglion Cells/pathology , gamma-Synuclein/metabolism , Animals , Astrocytes/metabolism , Disease Models, Animal , Glaucoma/genetics , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Inbred DBA , Nerve Crush
6.
Invest Ophthalmol Vis Sci ; 55(10): 6505-13, 2014 Sep 16.
Article in English | MEDLINE | ID: mdl-25228542

ABSTRACT

PURPOSE: We investigated the progressive nature of neurodegenerative structural changes following injury to retinal ganglion cell (RGC) axons using quantifiable and noninvasive in vivo imaging techniques. METHODS: To track degenerative RGC progression in retinas following optic nerve crush (ONC) injury, spectral-domain optical coherence tomography (SD-OCT) was used to quantitate the RGC nerve fiber layer (NFL) density. The RGC soma cell density (RCD) was measured by confocal scanning laser ophthalmoscopy (CSLO). The RCD counts were performed using blood vessels as landmarks to anatomically track defined progressive changes in enhanced yellow fluorescent fusion protein (EYFP)-labeled RGCs. RESULTS: Following ONC injury, 68% of the observed decrease in RCD measured by CSLO and 54% of the NFL thickness obtained by SD-OCT imaging (N=4 retinas) occurred within the first week. Between days 7 and 14, an additional 22% decrease in RCD was concurrent with a 31% decrease in overall NFL thickness. Finally, between days 14 and 21, an additional 10% decrease in RCD measured in vivo by CSLO and 15% decrease in NFL thickness by SD-OCT was observed. CONCLUSIONS: Our data suggest that in vivo CSLO imaging of EYFP-RGC expression and SD-OCT measured NFL thickness are fast and reliable methods that longitudinally track neurodegenerative progression following ONC injury. Neurodegenerative changes in NFL thickness measured by SD-OCT imaging have the same overall trajectory as those observed by CSLO for RCD; however, changes in NFL thickness initially lag behind in vivo RGC soma counts with a slower decline in overall measurable change.


Subject(s)
Axons/pathology , Optic Disk/pathology , Optic Nerve Injuries/pathology , Retinal Ganglion Cells/pathology , Animals , Cell Count , Disease Models, Animal , Mice , Mice, Transgenic , Nerve Crush/adverse effects , Tomography, Optical Coherence
7.
Curr Eye Res ; 38(1): 150-7, 2013 Jan.
Article in English | MEDLINE | ID: mdl-23002780

ABSTRACT

PURPOSE: Recent advances in technology now provide tools capable of tracking genome-wide expression changes occurring in progressive pathological processes. The present experiments were carried out to determine if acetylcholine receptor α 6 subunit (Chrna6) is a reliable retinal ganglion cell (RGC) marker in adult mouse eyes and if Chrna6 expression can be used to track progressive loss of RGCs, such as is observed in the DBA/2J glaucoma model. METHODS: Data sets derived from the BXD strains were used to extract gene expression signatures for RGCs. Pooled retinas from DBA/2J or C57BL/6J cases at 1-3 months, 12 months, and 16-17 months were prepared for gene-array and RT-PCR analysis. Globes were fixed in paraformaldehyde and sectioned for immunofluorescence with antibodies against Chrna6. RESULTS: Chrna6 has a cellular expression signature for RGCs with high correlation to Thy1 (r = 0.65), a recognized RGC marker. Immunofluorescence experiments confirm that in the young and adult mouse retina, Chrna6 is preferentially expressed by RGCs. We further show that C3H/HeJ retinas, which lack photoreceptors, also express Chrna6 in the RGC layer. Gene expression array analyses, confirmed by RT-PCR, show progressive loss of Chrna6 expression in retinas of the DBA/2J glaucomatous mouse retinas. CONCLUSIONS: Quantitative trait locus analysis provides support for Chrna6 as a RGC marker. Chrna6 expression decreases with death of RGCs in glaucomatous DBA/2J mice and after optic nerve crush injury, further supporting Chrna6 as a reliable RGC marker. High expression of RGC Chrna6 in the absence of photoreceptors is suggestive that Chrna6 expression by RGCs is independent of photoreceptor-derived stimuli.


Subject(s)
Gene Expression Regulation , Glaucoma/genetics , RNA/genetics , Receptors, Nicotinic/genetics , Retina/metabolism , Animals , Disease Models, Animal , Glaucoma/metabolism , Glaucoma/pathology , Mice , Mice, Inbred C3H , Mice, Inbred C57BL , Mice, Inbred DBA , Microscopy, Electron , Microscopy, Fluorescence , Real-Time Polymerase Chain Reaction , Receptors, Nicotinic/biosynthesis , Retina/ultrastructure
8.
Invest Ophthalmol Vis Sci ; 52(8): 5226-32, 2011 Jul 13.
Article in English | MEDLINE | ID: mdl-21622702

ABSTRACT

PURPOSE: Mice with a targeted disruption of Brn3b (knockout Brn3b(-/-)) undergo the loss of a majority of retinal ganglion cells (RGCs) before birth. Spectral domain optical coherence tomography (SD-OCT) allows for the noninvasive examination of Brn3b(-/-) cellular loss in vivo. METHODS: The central retinas of Brn3b(-/-) and phenotypically wild-type (Brn3b(+/+) and Brn3b(±)) mice were imaged by SD-OCT. The combined nerve fiber layer (NFL) and inner plexiform layer (IPL) were manually segmented and thickness maps were generated. The results were confirmed by histologic and immunofluorescence cell counts of the RGC layer (RGCL) of the same retinas. RESULTS: The combined NFL and IPL of the Brn3b(-/-) retinas were significantly thinner, and the histologic cell counts significantly lower, than those of the phenotypically wild-type retinas (paired t-test; P < 0.01 and P < 0.01, respectively). The combined NFL and IPL thickness and the histologic cell count correlated highly (R(2) = 0.9612). Immunofluorescence staining revealed significant RGC-specific loss in Brn3b(-/-) retinas (paired t-test; P < 0.01). The distribution of combined central NFL and IPL loss was not localized or sectorial. CONCLUSIONS: The strong correlation between the combined layer thickness and histologic cell counts validates manual OCT segmentation as a method of monitoring cell loss in the RGCL. A retinal thickness map assessed if combined NFL and IPL thickness loss in Brn3b(-/-) eyes was topographically specific. Generalized RGC and combined NFL and IPL loss was observed in the Brn3b(-/-) retinas, in contrast to topographically specific RGC loss observed in glaucomatous DBA2/J eyes.


Subject(s)
Eye Abnormalities/genetics , Eye Abnormalities/pathology , Glaucoma/genetics , Glaucoma/pathology , Homeodomain Proteins/genetics , Retinal Ganglion Cells/pathology , Transcription Factor Brn-3B/genetics , Animals , Cell Count , Disease Models, Animal , Mice , Mice, Inbred DBA , Mice, Knockout , Nerve Fibers/pathology , Phenotype , Tomography, Optical Coherence/methods
9.
Mol Vis ; 17: 413-9, 2011 Feb 05.
Article in English | MEDLINE | ID: mdl-21311743

ABSTRACT

PURPOSE: To determine retinal vesicular glutamate transporter 3 (VGLUT3) expression alterations in a mouse model of progressive optic neuropathy (glaucoma). METHODS: Tissue specimens were obtained from age-matched DBA/2J and control C57BL/6J mice for western blot analysis. Enucleated globes from DBA/2J, C57BL/6J, and BALB/cJ mice were fixed in formalin, paraffin-embedded, and sectioned for VGLUT3 protein localization. RESULTS: western blot analysis of the control retinas revealed the expression of a ~55 kDa immunoreactive VGLUT3 protein that is to be expected in tissues such as retina, brain, liver, heart, and kidney tissue, but not in intestinal or lung tissue. Furthermore, a strong ~130 kDa immunoreactive VGLUT3 isoform that is restricted to the central nervous system (the brain and retinas) was also identified in the controls, but was not detected in the DBA/2J retinas. Immunofluorescence microscopy showed a lack of VGLUT3 expression in the synapses between amacrine and retinal ganglion cells in DBA/2J retinas, in contrast to its strong expression in the C57BL/6J and BALB/cJ controls. CONCLUSIONS: Our results implicate the dysregulated expression of a central nervous system-specific VGLUT3 isoform as a predisposing factor in the development of optic neuropathy in DBA/2J mice, a spontaneous mouse model of glaucoma. In striking parallel to the visual system defects of glaucomatous DBA/2J mice, the inner ear of VGLUT3 knockout mice displays a progressive loss of inner hair cell to spiral-ganglion neuron synapses. A significant reduction in the number of spiral-ganglion neurons leads to age-associated deafness. Thus, we propose that the absence of this biochemically uncharacterized 130 kDa VGLUT3 isoform in the DBA/2J retina is a predisposing factor in synaptic instability, and a contributing factor in the age-dependent and progressive loss of ganglion cells projecting to the brain.


Subject(s)
Amino Acid Transport Systems, Acidic/metabolism , Gene Expression Regulation , Optic Nerve Diseases/metabolism , Animals , Brain/metabolism , Central Nervous System/metabolism , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , Microscopy, Fluorescence/methods , Protein Isoforms , Retina/metabolism , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...