Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Vis Exp ; (193)2023 03 31.
Article in English | MEDLINE | ID: mdl-37067271

ABSTRACT

Relapse after cancer treatment is often attributed to the persistence of a subpopulation of tumor cells known as cancer stem cells (CSCs), which are characterized by their remarkable tumor-initiating and self-renewal capacity. Depending on the origin of the tumor (e.g., ovaries), the CSC surface biomarker profile can vary dramatically, making the identification of such cells via immunohistochemical staining a challenging endeavor. On the contrary, aldehyde dehydrogenase 1A1 (ALDH1A1) has emerged as an excellent marker to identify CSCs, owing to its conserved expression profile in nearly all progenitor cells including CSCs. The ALDH1A1 isoform belongs to a superfamily of 19 enzymes that are responsible for the oxidation of various endogenous and xenobiotic aldehydes to the corresponding carboxylic acid products. Chan et al. recently developed AlDeSense, an isoform-selective "turn-on" probe for the detection of ALDH1A1 activity, as well as a non-reactive matching control reagent (Ctrl-AlDeSense) to account for off-target staining. This isoform-selective tool has already been demonstrated to be a versatile chemical tool through the detection of ALDH1A1 activity in K562 myelogenous leukemia cells, mammospheres, and melanoma-derived CSC xenografts. In this article, the utility of the probe was showcased through additional fluorimetry, confocal microscopy, and flow cytometry experiments where the relative ALDH1A1 activity was determined in a panel of five ovarian cancer cell lines.


Subject(s)
Aldehyde Dehydrogenase , Ovarian Neoplasms , Humans , Female , Aldehyde Dehydrogenase 1 Family/metabolism , Retinal Dehydrogenase/metabolism , Cell Line, Tumor , Aldehyde Dehydrogenase/metabolism , Ovarian Neoplasms/pathology , Neoplastic Stem Cells/pathology
2.
J Am Chem Soc ; 144(39): 18101-18108, 2022 10 05.
Article in English | MEDLINE | ID: mdl-36153991

ABSTRACT

The favorable properties of cyanines (e.g., near-infrared (NIR) absorbance and emission) have made this class of dyes popular for a wide variety of biomedical applications. However, many cyanines are prone to rapid photobleaching when irradiated with light. In this study, we have exploited this undesirable trait to develop NIR-nanogels for NIR light-mediated cargo delivery. NIR-nanogels feature a photolabile cyanine cross-linker (Cy780-Acryl) that can cleave via dioxetane chemistry when irradiated. This photochemical process results in the formation of two carbonyl fragments and concomitant NIR-nanogel degradation to facilitate cargo release. In contrast to studies where cyanines are utilized as photocages, our approach does not require direct chemical attachment to the cargo, thus expanding our ability to deliver molecules that cannot be covalently modified. We showcase this feature by encapsulating a palette of small-molecule chemotherapeutics that feature a structurally diverse chemical architecture. To demonstrate site-selective release in vivo, we generated a murine model of breast cancer. Relative to nonlight irradiated and drug-free controls, treatment with NIR-nanogels loaded with paclitaxel (a potent cytotoxic agent) and NIR light resulted in significant attenuation of tumor growth. Moreover, we show via histological staining of the vital organs that minimal off-target effects are observed.


Subject(s)
Drug Repositioning , Paclitaxel , Animals , Coloring Agents , Cytotoxins , Mice , Nanogels , Paclitaxel/pharmacology
3.
Methods Enzymol ; 657: 415-441, 2021.
Article in English | MEDLINE | ID: mdl-34353497

ABSTRACT

In this chapter, we describe a generalizable strategy to obtain a high PA output platform that is optimized for ratiometric imaging. Our approach entails conformationally restricting pendant aryl rings on the aza-BODIPY core to enhance orbital overlap which consequently increases the extinction coefficient. This strategy can potentially be applied to other dye platforms to enhance their signal intensity. We provide detailed protocols for the synthesis, in vitro characterization, and in vivo application.


Subject(s)
Boron Compounds , Spectrum Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...