Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Chem Phys ; 132(11): 114108, 2010 Mar 21.
Article in English | MEDLINE | ID: mdl-20331282

ABSTRACT

Coexistence properties of the hard-core attractive Yukawa potential with inverse-range parameter kappa=9, 10, 12, and 15 are calculated by applying canonical Monte Carlo simulation. As previously shown for longer ranges, we show that also for the ranges considered here the coexistence curves scaled by the critical density and temperature obey the law of corresponding states, and that a linear relationship between the critical density and the reciprocal of the critical temperature holds. The simulation results are compared to the predictions of the self-consistent Ornstein-Zernike approximation, and a good agreement is found for both the critical points and the coexistence curves, although some slight discrepancies are present.


Subject(s)
Computer Simulation , Models, Chemical , Quantum Theory , Thermodynamics , Monte Carlo Method , Phase Transition , Temperature
2.
J Chem Phys ; 120(5): 2337-42, 2004 Feb 01.
Article in English | MEDLINE | ID: mdl-15268372

ABSTRACT

Canonical Monte Carlo (NVT-MC) simulations were performed to obtain surface tension and coexistence densities at the liquid-vapor interface of one-site associating Lennard-Jones and hard-core Yukawa fluids, as functions of association strength and temperature. The method to obtain the components of the pressure tensor from NVT-MC simulations was validated by comparing the equation of state of the associative hard sphere system with that coming from isothermal-isobaric Monte Carlo simulations. Surface tension of the associative Lennard-Jones fluid determined from NVT-MC is compared with previously reported results obtained by molecular dynamics simulations of a pseudomixture model of monomers and dimers. A good agreement was found between both methods. Values of surface tension of associative hard-core Yukawa fluids are presented here for the first time.

SELECTION OF CITATIONS
SEARCH DETAIL
...