Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Jun 21.
Article in English | MEDLINE | ID: mdl-38948746

ABSTRACT

Local metabolic demand within cells varies widely and the extent to which individual mitochondria can be specialized to meet these functional needs is unclear. We examined the subcellular distribution of MICOS, a spatial and functional organizer of mitochondria, and discovered that it dynamically enriches at the tip of a minor population of mitochondria in the cell periphery that we term "METEORs". METEORs have a unique composition; MICOS enrichment sites are depleted of mtDNA and matrix proteins and contain high levels of the Ca2+ uniporter MCU, suggesting a functional specialization. METEORs are also enriched for the myosin MYO19, which promotes their trafficking to a small subset of filopodia. We identify a positive correlation between the length of filopodia and the presence of METEORs and show that elimination of mitochondria from filopodia impairs cellular motility. Our data reveal a novel type of mitochondrial heterogeneity and suggest compositionally specialized mitochondria support cell migration.

2.
bioRxiv ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38895390

ABSTRACT

Studying essential genes required for dynamic processes in live mice is challenging as genetic perturbations are irreversible and limited by slow protein depletion kinetics. The first-generation auxin-inducible-degron (AID) system is a powerful tool for analyzing inducible protein loss in cultured cells. However, auxin administration is toxic to mice, preventing its long-term use in animals. Here, we use an optimized second-generation AID system to achieve the conditional and reversible loss of the essential centrosomal protein CEP192 in live mice. We show that the auxin derivative 5-Ph-IAA is well tolerated over two weeks and drives near-complete CEP192-mAID degradation in less than one hour in vivo. Prolonged CEP192 loss led to cell division failure and cell death in proliferative tissues. Thus, the second-generation AID system is well suited for rapid and/or sustained protein depletion in live mice, offering a valuable new tool for interrogating protein function in vivo.

3.
EMBO J ; 43(5): 666-694, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279026

ABSTRACT

The efficacy of current antimitotic cancer drugs is limited by toxicity in highly proliferative healthy tissues. A cancer-specific dependency on the microtubule motor protein KIF18A therefore makes it an attractive therapeutic target. Not all cancers require KIF18A, however, and the determinants underlying this distinction remain unclear. Here, we show that KIF18A inhibition drives a modest and widespread increase in spindle assembly checkpoint (SAC) signaling from kinetochores which can result in lethal mitotic delays. Whether cells arrest in mitosis depends on the robustness of the metaphase-to-anaphase transition, and cells predisposed with weak basal anaphase-promoting complex/cyclosome (APC/C) activity and/or persistent SAC signaling through metaphase are uniquely sensitive to KIF18A inhibition. KIF18A-dependent cancer cells exhibit hallmarks of this SAC:APC/C imbalance, including a long metaphase-to-anaphase transition, and slow mitosis overall. Together, our data reveal vulnerabilities in the cell division apparatus of cancer cells that can be exploited for therapeutic benefit.


Subject(s)
Anaphase-Promoting Complex-Cyclosome , Neoplasms , Humans , Anaphase-Promoting Complex-Cyclosome/genetics , Dyneins , Kinesins/genetics , Kinetochores , Mitosis , Neoplasms/genetics
4.
Genes Dev ; 2022 Aug 18.
Article in English | MEDLINE | ID: mdl-35981754

ABSTRACT

Hepatocyte polyploidization is a tightly controlled process that is initiated at weaning and increases with age. The proliferation of polyploid hepatocytes in vivo is restricted by the PIDDosome-P53 axis, but how this pathway is triggered remains unclear. Given that increased hepatocyte ploidy protects against malignant transformation, the evolutionary driver that sets the upper limit for hepatocyte ploidy remains unknown. Here we show that hepatocytes accumulate centrioles during cycles of polyploidization in vivo. The presence of excess mature centrioles containing ANKRD26 was required to activate the PIDDosome in polyploid cells. As a result, mice lacking centrioles in the liver or ANKRD26 exhibited increased hepatocyte ploidy. Under normal homeostatic conditions, this increase in liver ploidy did not impact organ function. However, in response to chronic liver injury, blocking centriole-mediated ploidy control leads to a massive increase in hepatocyte polyploidization, severe liver damage, and impaired liver function. These results show that hyperpolyploidization sensitizes the liver to injury, posing a trade-off for the cancer-protective effect of increased hepatocyte ploidy. Our results may have important implications for unscheduled polyploidization that frequently occurs in human patients with chronic liver disease.

SELECTION OF CITATIONS
SEARCH DETAIL
...