Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Endocrinology ; 135(6): 2635-43, 1994 Dec.
Article in English | MEDLINE | ID: mdl-7988453

ABSTRACT

We have identified and characterized a mouse brain calcitonin receptor (CTR) complementary DNA (cDNA). This cDNA encodes a receptor protein that, after expression, has high affinity binding for salmon calcitonin (Kd approximately, 12.5 nM) and is coupled to adenylate cyclase. The binding affinity of this expressed receptor for salmon calcitonin is lower than that described for the previously cloned porcine renal and human ovarian CTRs, but is similar to that of the recently described rat brain CTR, designated the C1b form of the receptor. Analysis of the deduced structure of the mouse brain CTR reveals that it is highly related to the other CTR cDNAs that belong to a distinct family of G-protein-coupled receptors with seven transmembrane-spanning domains. The major structural feature that distinguishes the mouse cDNA clone from the other CTRs is the presence of a consecutive 111-basepair nucleotide sequence that encodes a 37-amino acid sequence which is predicted to localize to the first extracellular loop between the second and third transmembrane-spanning domains. We have mapped the CTR gene in the mouse to the proximal region of chromosome 6, which is homologous to the 7q region of human chromosome 7; only a single CTR gene was identified. Preliminary analysis of the mouse CTR gene reveals that it is complex, consisting of multiple exons separated by lengthy introns that would allow for splice variants consistent with the existence of multiple CTR isoforms predicted from the CTR cDNA clones. The differential cellular and tissue distribution of these functionally distinct CTR isoforms provides the molecular basis for the previously reported widespread distribution and functional heterogeneity of the CTR.


Subject(s)
Brain/metabolism , Chromosome Mapping , Cloning, Molecular , DNA, Complementary/genetics , Genes , Receptors, Calcitonin/genetics , Amino Acid Sequence , Animals , Base Sequence , Calcitonin/metabolism , Cell Line , Cyclic AMP/metabolism , Mice , Mice, Inbred C57BL , Molecular Sequence Data , RNA, Messenger/analysis , Rats , Salmon , Transfection
2.
J Clin Invest ; 90(5): 1726-35, 1992 Nov.
Article in English | MEDLINE | ID: mdl-1331173

ABSTRACT

A human ovarian small cell carcinoma line (BIN-67) expresses abundant calcitonin (CT) receptors (CTR) (143,000 per cell) that are coupled, to adenylate cyclase. The dissociation constants (Kd) for the CTRs on these BIN-67 cells is approximately 0.42 nM for salmon CT and approximately 4.6 nM for human CT. To clone a human CTR (hCTR), a BIN-67 cDNA library was screened using a cDNA probe from a porcine renal CTR (pCTR) that we recently cloned. One positive clone of 3,588 bp was identified. Transfection of this cDNA into COS cells resulted in expression of receptors with high affinity for salmon CT (Kd = approximately 0.44 nM) and for human CT (Kd = approximately 5.4 nM). The expressed hCTR was coupled to adenylate cyclase. Northern analysis with the hCTR cDNA probe indicated a single transcript of approximately 4.2 kb. The cloned cDNA encodes a putative peptide of 490 amino acids with seven potential transmembrane domains. The amino acid sequence of the hCTR is 73% identical to the pCTR, although the hCTR contains an insert of 16 amino acids between transmembrane domain I and II. The structural differences may account for observed differences in binding affinity between the porcine renal and human ovarian CTRs. The CTRs are closely related to the receptors for parathyroid hormone-parathyroid hormone-related peptide and secretin; these receptors comprise a distinct family of G protein-coupled seven transmembrane domain receptors. Interestingly, the hCTR sequence is remotely related to the cAMP receptor of Dictyostelium discoideum (21% identical), but is not significantly related to other G protein-coupled receptor sequences now in the data bases.


Subject(s)
Cloning, Molecular , Ovarian Neoplasms/chemistry , Receptors, Cell Surface/genetics , Amino Acid Sequence , Base Sequence , Cyclic AMP/biosynthesis , Female , Humans , Molecular Sequence Data , Ovarian Neoplasms/pathology , RNA, Messenger/analysis , Receptors, Calcitonin , Receptors, Cell Surface/analysis , Receptors, Cell Surface/chemistry , Receptors, Cyclic AMP/analysis , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...