Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Food Microbiol ; 419: 110744, 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-38763050

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) are foodborne enteric pathogens. STEC are differentiated from other E. coli by detection of Shiga toxin (Stx) or its gene (stx). The established nomenclature of Stx identifies ten subtypes (Stx1a, Stx1c, Stxd, Stx2a to Stx2g). An additional nine subtypes have been reported and described (Stx1e, Stx2h to Stx2o). Many PCR protocols only detect a subset of Stx subtypes which limits their inclusivity. Here we describe a real-time PCR assay inclusive of the DNA sequences of representatives of all currently described Stx subtypes. A multiplex real-time PCR assay for detection of stx was developed using nine primers and four probes. Since the identification of STEC does not require differentiation of stx subtypes, the probes use the same fluorescent reporter to enable detection of multiple possible targets in a single reaction. The PCR mixture includes an internal positive control to detect inhibition of the reaction. Thus, the protocol can be performed on a two-channel real-time PCR platform. To reduce the biosafety risk inherent in the use of STEC cultures as process controls, the protocol also includes the option of a non-pathogenic E. coli transformant carrying a plasmid encoding the targeted fragment of the stx2a sequence. The inclusivity of the PCR was assessed against colonies of 137 STEC strains and one strain of Shigella dysenteriae, including strains carrying single copies of stx representing fourteen subtypes (stx1 a, c, d; stx2 a-j and o). Five additional subtypes (stx1e, 2k, 2l, 2m and 2n) were represented by E. coli transformed with plasmids encoding toxoid (enzymatically inactive A subunit) sequences. The exclusivity panel consisted of 70 bacteria, including 21 stx-negative E. coli. Suitability for food analysis was assessed with artificially inoculated ground beef, spinach, cheese, and apple cider. The real-time PCR generated positive results for all 19 stx subtypes, represented by colonies of STEC, S. dysenteriae and E. coli transformants carrying stx toxoid plasmids. Tests of exclusivity panel colonies were all negative. The real-time PCR detected the presence of stx in all inoculated food enrichments tested, and the presence of STEC was confirmed by isolation.


Subject(s)
DNA Primers , Real-Time Polymerase Chain Reaction , Shiga-Toxigenic Escherichia coli , Real-Time Polymerase Chain Reaction/methods , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/classification , Shiga-Toxigenic Escherichia coli/isolation & purification , DNA Primers/genetics , Food Microbiology , Food Contamination/analysis , Shiga Toxin/genetics , Multiplex Polymerase Chain Reaction/methods
2.
Lab Chip ; 24(4): 668-679, 2024 02 13.
Article in English | MEDLINE | ID: mdl-38226743

ABSTRACT

We describe a microfluidic system for conducting thermal lysis, polymerase chain reaction (PCR) amplification, hybridization, and colorimetric detection of foodborne viral organisms in a sample-to-answer format. The on-chip protocol entails 24 steps which are conducted by a centrifugal platform that allows for actuating liquids pneumatically during rotation and so facilitates automation of the workflow. The microfluidic cartridge is fabricated from transparent thermoplastic polymers and accommodates assay components along with an embedded micropillar array for detection and read-out. A panel of oligonucleotide primers and probes has been developed to perform PCR and hybridization assays that allows for identification of five different viruses, including pathogens such as norovirus and hepatitis A virus (HAV) in a multiplexed format using digoxigenin-labelled amplicons and immunoenzymatic conversion of a chromogenic substrate. Using endpoint detection, we demonstrate that the system can accurately and repetitively (n = 3) discriminate positive and negative signals for HAV at 350 genome copies per µL. As part of the characterization and optimization process, we show that the implementation of multiple (e.g., seven) micropillar arrays in a narrow fluidic pathway can lead to variation (up to 50% or more) in the distribution of colorimetric signal deriving from the assay. Numerical modeling of flow behaviour was used to substantiate these findings. The technology-by virtue of automation-can provide a pathway toward rapid detection of viral pathogens, shortening response time in food safety surveillance, compliance, and enforcement as well as outbreak investigations.


Subject(s)
Colorimetry , Microfluidics , Nucleic Acid Hybridization , Oligonucleotide Array Sequence Analysis , Rotation
3.
Lab Chip ; 24(2): 182-196, 2024 01 17.
Article in English | MEDLINE | ID: mdl-38044704

ABSTRACT

The intensive workload associated with the preparation of high-quality DNA libraries remains a key obstacle toward widespread deployment of sequencing technologies in remote and resource-limited areas. We describe the development of single-use microfluidic devices driven by an advanced pneumatic centrifugal microfluidic platform, the PowerBlade, to automate the preparation of Illumina-compatible libraries based on adaptor ligation methodology. The developed on-chip workflow includes enzymatic DNA fragmentation coupled to end-repair, adaptor ligation, first DNA cleanup, PCR amplification, and second DNA cleanup. This complex workflow was successfully integrated into simple thermoplastic microfluidic devices that are amenable to mass production with injection molding. The system was validated by preparing, on chip, libraries from a mixture of genomic DNA extracted from three common foodborne pathogens (Listeria monocytogenes, Escherichia coli and Salmonella enterica serovar Typhimurium) and comparing them with libraries made via a manual procedure. The two types of libraries were found to exhibit similar quality control metrics (including genome coverage, assembly, and relative abundances) and led to nearly uniform coverage independent of GC content. This microfluidic technology offers a time-saving and cost-effective alternative to manual procedures and robotic-based automation, making it suitable for deployment in remote environments where technical expertise and resources might be scarce. Specifically, it facilitates field practices that involve mid- to low-throughput sequencing, such as tasks related to foodborne pathogen detection, characterization, and microbial profiling.


Subject(s)
Microfluidics , Salmonella typhimurium , DNA, Bacterial/genetics , Salmonella typhimurium/genetics , Escherichia coli/genetics , Automation , Oligonucleotides
4.
J Food Prot ; 86(3): 100052, 2023 03.
Article in English | MEDLINE | ID: mdl-36916559

ABSTRACT

Shiga toxigenic Escherichia coli (STEC) have been implicated in major foodborne outbreaks worldwide. The STEC family of pathogens is biochemically diverse, and current microbiological methods for detecting STEC are limited by the lack of a universal selective enrichment approach and prone to interference by high levels of background microbiota associated with certain types of foods. A novel approach has been developed for the recovery of foodborne illness outbreak strains during outbreak investigations based on the analysis of whole genome sequence data of implicated clinical isolates to determine antimicrobial resistance (AMR) genes. The presence of certain AMR genes in STEC has been correlated with the ability to grow in the presence of a specific antibiotic, which can be used to supplement enrichment broths to improve the recovery of a target strain. The enhanced recovery of STEC strains with different AMR profiles from various food types (beef, sprouts, leafy greens, and raw milk cheese) containing high levels of background microbiota was demonstrated using AMR predictions for nine different antibiotics. This genomically informed custom selective enrichment approach increases the availability of analytical options and improves the reliability of food microbiological analyses in confirming food vehicles implicated in outbreak events and defining the scope of product contamination to support risk assessment and risk management actions.


Subject(s)
Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Humans , Escherichia coli Infections/microbiology , Anti-Bacterial Agents/pharmacology , Reproducibility of Results , Disease Outbreaks , Food Microbiology
5.
J Food Prot ; 82(1): 39-44, 2019 01.
Article in English | MEDLINE | ID: mdl-30586325

ABSTRACT

Next-generation sequencing plays an important role in the characterization of clinical bacterial isolates for source attribution purposes during investigations of foodborne illness outbreaks. Once an illness cluster and a suspect food vehicle have been identified, food testing is initiated for confirmation and to determine the scope of a contamination event so that the implicated lots may be removed from the marketplace. For biochemically diverse families of pathogens such as Shiga toxin-producing Escherichia coli (STEC), the ability to detect specific strains may be hampered by the lack of a universal selective enrichment approach for their recovery against high levels of background microbiota. The availability of whole genome sequence data for a given outbreak STEC strain prior to commencement of food testing may provide food microbiologists an opportunity to customize selective enrichment techniques favoring the recovery of the outbreak strain. Here we demonstrate the advantages of using the publicly available ResFinder tool in the analysis of STEC model strains belonging to serotypes O111 and O157 to determine antimicrobial resistance traits that can be used in formulating strain-specific enrichment media to enhance recovery of these strains from microbiologically complex food samples. The improved recovery from ground beef of model STEC strains with various antimicrobial resistance profiles was demonstrated using three classes of antibiotics as selective agents, suggesting the universal applicability of this new approach in supporting foodborne illness investigations.


Subject(s)
Escherichia coli Infections , Foodborne Diseases , Meat Products/microbiology , Shiga-Toxigenic Escherichia coli , Animals , Cattle , Disease Outbreaks , Escherichia coli Infections/transmission , Shiga-Toxigenic Escherichia coli/genetics , Shiga-Toxigenic Escherichia coli/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...