Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 307(5708): 411-4, 2005 Jan 21.
Article in English | MEDLINE | ID: mdl-15662010

ABSTRACT

Beryllium-10 surface exposure dating of offset moraines on one branch of the Karakorum Fault west of the Gar basin yields a long-term (140- to 20-thousand-year) right-lateral slip rate of approximately 10.7 +/- 0.7 millimeters per year. This rate is 10 times larger than that inferred from recent InSAR analyses ( approximately 1 +/- 3 millimeters per year) that span approximately 8 years and sample all branches of the fault. The difference in slip-rate determinations suggests that large rate fluctuations may exist over centennial or millennial time scales. Such fluctuations would be consistent with mechanical coupling between the seismogenic, brittle-creep, and ductile shear sections of faults that reach deep into the crust.

2.
Science ; 294(5547): 1671-7, 2001 Nov 23.
Article in English | MEDLINE | ID: mdl-11721044

ABSTRACT

Two end member models of how the high elevations in Tibet formed are (i) continuous thickening and widespread viscous flow of the crust and mantle of the entire plateau and (ii) time-dependent, localized shear between coherent lithospheric blocks. Recent studies of Cenozoic deformation, magmatism, and seismic structure lend support to the latter. Since India collided with Asia approximately 55 million years ago, the rise of the high Tibetan plateau likely occurred in three main steps, by successive growth and uplift of 300- to 500-kilometer-wide crustal thrust-wedges. The crust thickened, while the mantle, decoupled beneath gently dipping shear zones, did not. Sediment infilling, bathtub-like, of dammed intermontane basins formed flat high plains at each step. The existence of magmatic belts younging northward implies that slabs of Asian mantle subducted one after another under ranges north of the Himalayas. Subduction was oblique and accompanied by extrusion along the left lateral strike-slip faults that slice Tibet's east side. These mechanisms, akin to plate tectonics hidden by thickening crust, with slip-partitioning, account for the dominant growth of the Tibet Plateau toward the east and northeast.

3.
Nature ; 404(6775): 269-73, 2000 Mar 16.
Article in English | MEDLINE | ID: mdl-10749206

ABSTRACT

On 17 August 1999, a destructive magnitude 7.4 earthquake occurred 100 km east of Istanbul, near the city of Izmit, on the North Anatolian fault. This 1,600-km-long plate boundary slips at an average rate of 2-3 cm yr(-1), and historically has been the site of many devastating earthquakes. This century alone it has ruptured over 900 km of its length. Models of earthquake-induced stress change combined with active fault maps had been used to forecast that the epicentral area of the 1999 Izmit event was indeed a likely location for the occurrence of a large earthquake. Here we show that the 1999 event itself significantly modifies the stress distribution resulting from previous fault interactions. Our new stress models take into account all events in the region with magnitudes greater than 6 having occurred since 1700 as well as secular interseismic stress change, constrained by GPS data. These models provide a consistent picture of the long term spatio-temporal behaviour of the North Anatolian fault and indicate that two events of magnitude equal to, or greater than, the Izmit earthquake are likely to occur within the next decades beneath the Marmara Sea, south of Istanbul.

4.
Science ; 282(5386): 74-6, 1998 Oct 02.
Article in English | MEDLINE | ID: mdl-9756478

ABSTRACT

Seismic tomography across the Altyn Tagh fault, at the north edge of the Tibetan Plateau, reveals a low P-wave velocity anomaly below the fault down to 140 kilometers. This anomaly probably reflects strike-slip shear in the lithosphere. Slip-partitioning may also induce a wedge of crust from the Tarim Basin to plunge into the mantle.

5.
Science ; 246(4935): 1285-9, 1989 Dec 08.
Article in English | MEDLINE | ID: mdl-17832223

ABSTRACT

Images taken by the earth observation satellite SPOT of the Quaternary morphology at 18 sites on the 2000-kilometer-long Altyn Tagh fault at the north edge of Tibet demonstrate that it is outstandingly active. Long-term, left-lateral strike-slip offsets of stream channels, alluvial terrace edges, and glacial moraines along the fault cluster between 100 and 400 meters. The high elevation of the sites, mostly above 4000 meters in the periglacial zone, suggests that most offsets resulted from slip on the fault since the beginning of the Holocene. These data imply that slip rates are 2 to 3 centimeters per year along much of the fault length and support the hypothesis that the continuing penetration of India into Asia forces Tibet rapidly toward the east.

SELECTION OF CITATIONS
SEARCH DETAIL
...