Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(5): 053702, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35649803

ABSTRACT

Hyperspectral imaging is an important asset of modern spectroscopy. It allows us to perform optical metrology at a high spatial resolution, for example in cathodoluminescence in scanning electron microscopy. However, hyperspectral datasets present added challenges in their analysis compared to individually taken spectra due to their lower signal to noise ratio and specific aberrations. On the other hand, the large volume of information in a hyperspectral dataset allows the application of advanced statistical analysis methods derived from machine-learning. In this article, we present a methodology to perform model fitting on hyperspectral maps, leveraging principal component analysis to perform a thorough noise analysis of the dataset. We explain how to correct the imaging shift artifact, specific to imaging spectroscopy, by directly evaluating it from the data. The impact of goodness-of-fit-indicators and parameter uncertainties is discussed. We provide indications on how to apply this technique to a variety of hyperspectral datasets acquired using other experimental techniques. As a practical example, we provide an implementation of this analysis using the open-source Python library hyperspy, which is implemented using the well established Jupyter Notebook framework in the scientific community.

2.
ACS Appl Nano Mater ; 5(4): 5508-5515, 2022 Apr 22.
Article in English | MEDLINE | ID: mdl-35492438

ABSTRACT

III-V semiconductors outperform Si in many optoelectronics applications due to their high carrier mobility, efficient light emission and absorption processes, and the possibility to engineer their band gap through alloying. However, complementing Si technology with III-V semiconductors by integration on Si(100) remains a challenge still today. Vertical nanospades (NSPDs) are quasi-bi-crystal III-V nanostructures that grow on Si(100). Here, we showcase the potential of these structures in optoelectronics application by demonstrating InGaAs heterostructures on GaAs NSPDs that exhibit bright emission in the near-infrared region. Using cathodoluminescence hyperspectral imaging, we are able to study light emission properties at a few nanometers of spatial resolution, well below the optical diffraction limit. We observe a symmetric spatial luminescence splitting throughout the NSPD. We correlate this characteristic to the structure's crystal nature, thus opening new perspectives for dual wavelength light-emitting diode structures. This work paves the path for integrating optically active III-V structures on the Si(100) platform.

3.
Adv Sci (Weinh) ; 9(13): e2103729, 2022 May.
Article in English | MEDLINE | ID: mdl-35238172

ABSTRACT

Studying the compositional instability of mixed ion perovskites under light illumination is important to understand the mechanisms underlying their efficiency and stability. However, current techniques are limited in resolution and are unable to deconvolute minor ion migration phenomena. Here, a method that enables ion migration to be studied allowing different segregation mechanisms to be elucidated is described. Statistical analysis is applied to cathodoluminescence data to generate compositional distribution histograms. Using these histograms, two different ion migration phenomena, horizontal ion migration (HIM) and vertical ion migration (VIM), are identified in different perovskite films. It is found that most passivating agents inhibit HIM, but not VIM. However, VIM can be reduced by deposition of imidazolium iodide on the perovskite surface. This method can be used to study perovskite-based devices efficiency and stability by providing molecular level mechanistic understanding of passivation approaches leading to performance improvement of perovskite solar cells via rational design.

4.
Nanoscale Adv ; 3(1): 214-222, 2021 Jan 07.
Article in English | MEDLINE | ID: mdl-36131871

ABSTRACT

The controlled modification of the electronic properties of ZnO nanorods via transition metal doping is reported. A series of ZnO nanorods were synthesized by chemical bath growth with varying Co content from 0 to 20 atomic% in the growth solution. Optoelectronic behavior was probed using cathodoluminescence, time-resolved luminescence, transient absorbance spectroscopy, and the incident photon-to-current conversion efficiency (IPCE). Analysis indicates the crucial role of surface defects in determining the electronic behavior. Significantly, Co-doping extends the light absorption of the nanorods into the visible region, increases the surface defects, and shortens the non-radiative lifetimes, while leaving the radiative lifetime constant. Furthermore, for 1 atomic% Co-doping the IPCE of the ZnO nanorods is enhanced. These results demonstrate that doping can controllably tune the functional electronic properties of ZnO nanorods for applications.

5.
Nanoscale ; 12(44): 22534-22540, 2020 Nov 19.
Article in English | MEDLINE | ID: mdl-33090166

ABSTRACT

Zinc phosphide (Zn3P2) nanowires constitute prospective building blocks for next generation solar cells due to the combination of suitable optoelectronic properties and an abundance of the constituting elements in the Earth's crust. The generation of periodic superstructures along the nanowire axis could provide an additional mechanism to tune their functional properties. Here we present the vapour-liquid-solid growth of zinc phosphide superlattices driven by periodic heterotwins. This uncommon planar defect involves the exchange of Zn by In at the twinning boundary. We find that the zigzag superlattice formation is driven by reduction of the total surface energy of the liquid droplet. The chemical variation across the heterotwin does not affect the homogeneity of the optical properties, as measured by cathodoluminescence. The basic understanding provided here brings new propsects on the use of II-V semiconductors in nanowire technology.

6.
Adv Mater ; 32(38): e2001030, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32762011

ABSTRACT

The nature of the liquid-solid interface determines the characteristics of a variety of physical phenomena, including catalysis, electrochemistry, lubrication, and crystal growth. Most of the established models for crystal growth are based on macroscopic thermodynamics, neglecting the atomistic nature of the liquid-solid interface. Here, experimental observations and molecular dynamics simulations are employed to identify the 3D nature of an atomic-scale ordering of liquid Ga in contact with solid GaAs in a nanowire growth configuration. An interplay between the liquid ordering and the formation of a new bilayer is revealed, which, contrary to the established theories, suggests that the preference for a certain polarity and polytypism is influenced by the atomic structure of the interface. The conclusions of this work open new avenues for the understanding of crystal growth, as well as other processes and systems involving a liquid-solid interface.

7.
Nano Lett ; 19(12): 8903-8910, 2019 12 11.
Article in English | MEDLINE | ID: mdl-31682755

ABSTRACT

The chemical transformation of nanowire templates into nanotubes is a promising avenue toward hollow one-dimensional (1D) nanostructures. To date, high-quality single crystalline tubes of nonlayered inorganic crystals have been obtained by solid-state reactions in diffusion couples of nanowires with deposited thin film shells, but this approach presents issues in achieving single-phase tubes with a desired stoichiometry. Chemical transformations with reactants supplied from the gas- or vapor-phase can avoid these complications, allowing single-phase nanotubes to be obtained through self-termination of the reaction once the sacrificial template has been consumed. Here, we demonstrate the realization of this scenario with the transformation of zincblende GaAs nanowires into single-crystalline cubic γ-Ga2S3 nanotubes by reaction with sulfur vapor. The conversion proceeds via the formation of epitaxial GaAs-Ga2S3 core-shell structures, vacancy injection and aggregation into Kirkendall voids, elastic relaxation of the detached Ga2S3 shell, and finally complete incorporation of Ga in a crystalline chalcogenide tube. Absorption and luminescence spectroscopy on individual nanotubes show optoelectronic properties, notably a ∼3.1 eV bandgap and intense band-edge and near band-edge emission consistent with high-quality single crystals, along with transitions between gap-states due to the inherent cation-vacancy defect structure of Ga2S3. Our work establishes the transformation of nanowires via vapor-phase reactions as a viable approach for forming single-crystalline hollow 1D nanostructures with promising properties.

8.
ACS Nano ; 13(5): 5833-5840, 2019 May 28.
Article in English | MEDLINE | ID: mdl-31038924

ABSTRACT

III-V integration on Si(100) is a challenge: controlled vertical vapor liquid solid nanowire growth on this platform has not been reported so far. Here we demonstrate an atypical GaAs vertical nanostructure on Si(100), coined nanospade, obtained by a nonconventional droplet catalyst pinning. The Ga droplet is positioned at the tip of an ultrathin Si pillar with a radial oxide envelope. The pinning at the Si/oxide interface allows the engineering of the contact angle beyond the Young-Dupré equation and the growth of vertical nanospades. Nanospades exhibit a virtually defect-free bicrystalline nature. Our growth model explains how a pentagonal twinning event at the initial stages of growth provokes the formation of the nanospade. The optical properties of the nanospades are consistent with the high crystal purity, making these structures viable for use in integration of optoelectronics on the Si(100) platform.

SELECTION OF CITATIONS
SEARCH DETAIL
...