Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 103(2): 1072-1099, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31837797

ABSTRACT

Compost-bedded pack barns (CBP) are receiving increasing attention as a housing system for dairy cows that has potential to improve animal welfare. This article reviews current scientific knowledge about CBP with the aim of providing a comprehensive tool for producers and researchers using this housing system. In CBP, cows are provided with an open bedded pack area rather than the individual stalls and concrete alleys found in freestall systems. The bedded pack, a mixture of organic bedding and cattle excreta, is cultivated frequently (1-3 times per day) to incorporate fresh manure and air into the pack, thus promoting an aerobic composting process. To function well, CBP generally require a large area per cow. Optimal animal densities over the bedded area range from 7.4 to more than 15 m2/cow depending on several factors, including climate, bedding, pack management, and cow characteristics. Studies have indicated that CBP, compared with conventional systems such as freestall barns, have the potential to improve the welfare of dairy cows. In particular, the main reported benefits include improved comfort during resting, better foot and leg health, and more natural animal behavior. Research has also indicated that adequate udder health can be achieved in CBP. However, because the bedded pack has been shown to contain high bacterial concentrations, proper management is essential to maintain adequate cow cleanliness and reduce the risk of mastitis. Controlling pack moisture is consistently indicated as the most important issue with CBP. Especially under cold and humid weather conditions, large amounts of bedding may be necessary to keep the pack adequately dry and comfortable for the cows. Nevertheless, the improvements in cow health may offset the higher costs of bedding.


Subject(s)
Composting , Dairying , Housing, Animal , Animal Welfare , Animals , Behavior, Animal , Cattle , Dairying/economics , Female , Mammary Glands, Animal/physiology , Mastitis, Bovine/prevention & control
2.
J Dairy Sci ; 97(5): 2669-79, 2014 May.
Article in English | MEDLINE | ID: mdl-24630648

ABSTRACT

The objective of this study was to assess the relationships among temperature, moisture, carbon-to-nitrogen (C:N) ratio, space per cow, and bacterial counts from bedding material collected from compost bedded pack (CBP) barns. A field survey of 42 routinely aerated CBP barns was conducted in Kentucky between October 2010 and March 2011. Two bedding material samples of 1,064.7 cm(3) each were collected during a single site visit from 9 evenly distributed locations throughout each barn and thoroughly mixed to create a composite sample representative of the entire CBP. Bacterial counts were determined for coliforms, Escherichia coli, streptococci, staphylococci, and Bacillus spp. University of Kentucky Regulatory Services (Lexington) laboratory personnel performed nutrient analyses to determine moisture, carbon, and nitrogen contents. Surface and 10.2-cm pack depth temperatures were collected for each of the 9 evenly distributed locations and the mean calculated to produce a composite temperature. Space per cow was calculated as the total CBP area divided by number of cows housed on the CBP. The GLM procedure of SAS (SAS Institute Inc., Cary, NC) generated models to describe factors affecting bacterial counts. Bacterial counts were 6.3 ± 0.6, 6.0 ± 0.6, 7.2 ± 0.7, 7.9 ± 0.5, and 7.6 ± 0.5 log 10 cfu/g of dry matter for coliform, Escherichia coli, streptococci, staphylococci, and Bacillus spp., respectively. Composite temperature, CBP moisture, C:N ratio, and space per cow had no effect on coliform counts. Escherichia coli reached a peak concentration when the C:N ratio was between 30:1 and 35:1. Staphylococci counts increased as ambient temperature increased. Streptococci counts decreased with increased space per cow and composite temperature and increased with increasing ambient temperature and moisture. Streptococci counts peaked at a C:N ratio ranging from 16:1 to 18:1. Bacillus spp. counts were reduced with increasing moisture, C:N ratio, and ambient temperature. Mastitis-causing bacteria thrive in similar conditions to that of composting bacteria and microbes, making elimination of these at higher temperatures (55 to 65°C) difficult in an active composting environment. Producers must use recommended milking procedures and other preventative practices to maintain low somatic cell count in herds with a CBP barn.


Subject(s)
Bacterial Load , Cattle/physiology , Housing, Animal , Soil , Animals , Bacillus , Carbon/analysis , Cell Count , Dairying/methods , Escherichia coli , Female , Humidity , Kentucky , Milk/cytology , Milk/microbiology , Nitrogen/analysis , Soil/chemistry , Soil Microbiology , Staphylococcus , Streptococcus , Temperature
3.
J Dairy Sci ; 96(12): 8060-74, 2013.
Article in English | MEDLINE | ID: mdl-24404593

ABSTRACT

The objective of the research was to characterize herd performance, producer satisfaction and recommendations, and management practices used by compost bedded pack (CBP) managers in Kentucky (42 farms and 47 CBP facilities). Farms were visited between October 2010 and March 2011. A random selection of cows housed solely in the CBP were scored for locomotion and hygiene. Changes in monthly Dairy Herd Improvement Association performance records, including milk production, SCC, reproductive performance, and daily bulk-tank somatic cell count after moving into the CBP were analyzed using the MIXED procedure of SAS (SAS 9.3; SAS Institute Inc., Cary, NC). The GLM procedure of SAS (SAS 9.3) was used to develop models to describe CBP moisture, CBP temperature at 20.3 cm, and mean herd hygiene. Producers provided 9.0 ± 2.2 m2 of pack space per cow (n = 44). Barns constructed with an attached feed alley cost $1,051 ± 407 per cow (n = 40). Barns constructed without an attached feed alley cost $493 ± 196 per cow (n = 13). Kiln-dried shavings required 0.05 ± 0.04 m3 of bedding per cow per day (n = 15). Green shavings required 0.07 ± 0.06 m3 of bedding per cow per day (n = 12). The most-frequently cited benefits of the CBP included cow comfort (n = 28), cow cleanliness (n = 14), and the low-maintenance nature of the system (n = 10). Increased stirring frequency, stirring depth, and ambient temperature increased pack temperature, measured at 20.3 cm below the CBP surface. Increased stirring depth, pasture-adjusted space per cow, and drying rate decreased CBP moisture. Mean herd locomotion and hygiene scores were 1.5 ± 0.3 (n = 34) and 2.2 ± 0.4 (n = 34), respectively. Increased 20.3-cm depth CBP temperature and ambient temperatures improved mean herd hygiene. Bulk-tank somatic cell count decreased from the year before to the year after moving into the CBP barn (323,692 ± 7,301 vs. 252,859 ± 7,112 cells/mL, respectively) for farms using the CBP barn as the primary housing facility (n = 9). Daily milk production, collected from monthly Dairy Herd Improvement Association tests, increased from before moving into the CBP barn to the second year after (29.3 ± 0.3 vs. 30.7 ± 0.3 kg, respectively) for farms using the CBP barn as the primary housing facility (n = 8). Calving interval decreased from the year before to the second year after (14.3 ± 0.1 vs. 13.7 ± 0.1 mo) moving into the CBP barn for farms using the CBP as primary housing (n = 8).


Subject(s)
Dairying , Housing, Animal , Animal Husbandry , Animals , Cattle , Cattle Diseases/prevention & control , Cell Count/veterinary , Kentucky , Milk/cytology , Soil
4.
Inorg Chem ; 45(9): 3695-700, 2006 May 01.
Article in English | MEDLINE | ID: mdl-16634603

ABSTRACT

Several salts of bis(chlorosulfonyl)imide HN(SO2Cl)2 (1), namely, two solvates of its potassium salt, KN(SO2Cl)2.(1/2)CH3CN (1K1), KN(SO2Cl)2.(1/6)CH2Cl2 (1K2), and its tetrachlorophosphonium salt, [PCl4][N(SO2Cl)2] (2), were prepared and structurally characterized. The reaction of HN(SO2Cl)2 with Me3N gives the [N(SO2Cl)2]- salt of a novel cation, [N(SO2NMe3)2]+. This cation is analogous to the [HC(SO2NMe3)2]+ cation, but in contrast to the latter, it is fairly stable to hydrolysis. The salt [N(SO2NMe3)2]+[N(SO2Cl)2]- (3) can be converted into salts of other anions by being treated with diluted aqueous solutions of the respective acids, and thus NO3-, Cl-.H2O, SeO3(2-), CH3COO-, HSO4-, (COO)2(2-) salts were prepared. Treatment of 3 with concentrated HNO3 gave the [N(SO2NMe3)2]+ [O2NO-H-ONO2]- salt, and the addition of an HCl-acidified FeCl3 aqueous solution yielded the FeCl4- salt. Methanolysis resulted in the formation of MeOSO3- and [MeOSO2NSO2OMe]- salts. All salts have been characterized by chemical analysis, vibrational spectroscopy, and X-ray structure determinations.

5.
Poult Sci ; 77(10): 1481-7, 1998 Oct.
Article in English | MEDLINE | ID: mdl-9776054

ABSTRACT

An experiment was conducted to determine the effect of diets with reduced CP and supplemental amino acids on broiler performance, N excretion, litter characteristics, and equilibrium NH3 gas concentration. Results suggest that reducing CP (and lysine) below 241 g/kg (13.7 g/kg lysine) in the diets fed during the first 3 wk may slightly increase feed:gain and therefore may not be advisable. During the period 22 to 43 d of age there were no significant differences in weight gain and BW at 6 wk of age when reducing CP from 215 g/kg (11.5 g/kg lysine) to 196 g/kg (11.3 g/kg lysine), but feed intake and feed:gain ratio increased. However, reducing CP did cause equilibrium NH3 gas concentration and litter N to decline by 31 and 16.5%, respectively. Both of these advantages will improve air quality within the housing facility and possibly reduce heating costs during winter associated with higher ventilation rates required to reduce elevated NH3 gas concentrations.


Subject(s)
Ammonia/analysis , Animal Feed , Chickens/growth & development , Dietary Proteins , Weight Gain , Aging , Amino Acids , Animals , Food, Fortified , Lysine , Male , Waste Products/analysis
6.
Poult Sci ; 77(8): 1085-93, 1998 Aug.
Article in English | MEDLINE | ID: mdl-9706071

ABSTRACT

An experiment was conducted to determine whether broiler litter concentration of N and P and equilibrium NH3 gas concentration can be reduced by reducing dietary CP and P levels and supplementing with amino acids and phytase, respectively, without adversely affecting bird performance. Equilibrium NH3 gas concentration above the litter was measured. The experiment was divided into a starter period (1 to 21 d) and grower period (22 to 42 d), each having two different CP and P levels in a 2 x 2 factorial arrangement. The CP treatments consisted of a control with a mean CP of 204 and 202 g/kg for starter and grower periods, respectively, and a low CP diet with means of 188 and 183 g/kg, respectively, but with similar amino acid levels as the control. The P treatments comprised starter and grower control diets containing means of 6.7 and 6.3 g/kg P, respectively, and low P treatment means of 5.8 and 5.4 g/kg P supplemented with 1.0 g/kg phytase. Reducing starter diet CP by 16 g/kg reduced weight gain by 3.5% and, hence, body weight at 21 d of age, but did not affect feed intake or feed efficiency. Reducing P did not affect feed intake and weight gain, but improved feed efficiency by 2.0%. Responses in feed intake and efficiency to CP depended on the level of dietary P. For the grower period there were no significant differences in feed intake, weight gain, and feed efficiency, nor in body weight at 42 d of age, after correcting for 21-d body weight, between CP and P treatments. There were significant (P < 0.001) reductions in litter N and P concentrations, but not equilibrium NH3 gas concentration, moisture content, or pH, for low CP and P diets. Mean equilibrium NH3 gas concentration was 63 ppm. Litter N concentration was reduced 16.3% with the low CP diets, and litter P by 23.2% in low P treatments. The results suggest that dietary manipulation shows merit for reducing litter N and P concentrations while maintaining acceptable production performance from broilers.


Subject(s)
Ammonia/analysis , Chickens/physiology , Dietary Proteins , Phosphorus, Dietary , Analysis of Variance , Animal Feed , Animals , Factor Analysis, Statistical , Housing, Animal , Male , Waste Products/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...