Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Opt Express ; 14(4): 1509-1521, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37078039

ABSTRACT

Studies of the optical properties of biological tissues in the infrared range have demonstrated significant potential for diagnostic tasks. One of the insufficiently explored ranges for diagnostic problems at the moment is the fourth transparency window, or short wavelength infrared region II (SWIR II). A Cr2+:ZnSe laser with tuning capability in the range from 2.1 to 2.4 µm was developed to explore the possibilities in this region. The capability of diffuse reflectance spectroscopy to analyze water and collagen content in biosamples was investigated using the optical gelatin phantoms and the cartilage tissue samples during their drying process. It was demonstrated that decomposition components of the optical density spectra correlated with the partial content of the collagen and water in the samples. The present study indicates the possibility of using this spectral range for the development of diagnostic methods, in particular, for observation of the changes in the content of cartilage tissue components in degenerative diseases such as osteoarthritis.

2.
Opt Lett ; 48(5): 1196-1199, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36857247

ABSTRACT

LiGaSe2 is a propitious material for nonlinear parametric conversion in the mid-infrared (mid-IR) range. Its refractive index of n = 2.25 in the 2-12 µm wavelength range results in significant losses due to Fresnel reflection. However, the conventional method of increasing the transmittance with antireflection coatings (ARCs) significantly reduces the damage threshold of the material. Fabrication of the antireflection microstructures (ARMs) is an alternative approach for increasing the surface transmittance. In this work, ARMs were fabricated on the surface of a LiGaSe2 crystal using a single-pulse femtosecond laser ablation method. An average transmittance of 97.2% in the 2-8 µm spectral range and the maximum transmittance of 98.6% at 4.1 µm were achieved.

3.
Opt Lett ; 45(21): 5994-5997, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-33137052

ABSTRACT

GaSe crystals are promising as nonlinear optical converters in the mid- and far-IR ranges. However, it is challenging to increase the GaSe surface transmittance of 77% with conventional antireflection coatings because of poor surface quality, leading to coating adhesion problems. Antireflection microstructures (ARMs) offer an alternative way of increasing surface transmittance. In this work, ARMs were fabricated on the surface of a GaSe plate by single-pulse femtosecond laser ablation. An average GaSe surface transmittance of 94% in the 7-11 µm range and a maximum transmittance of 97.8% at 8.5 µm were obtained. The proposed method can be used to increase the efficiency of GaSe-based nonlinear converters.

4.
Opt Express ; 27(9): 12090-12099, 2019 Apr 29.
Article in English | MEDLINE | ID: mdl-31052754

ABSTRACT

We report on the study of quenching and thermal lensing based on simple effective lens approximation in a Cr2+:CdSe active medium, including detailed research on the medium's luminescence lifetime dependence on temperature in the 236-391 K range. This work has allowed us to partially overcome the limitations associated with thermal effects in the medium and build a laser system that allowed power scalability to be realized for the Cr2+:CdSe laser. Longitudinal pumping using a continuous-wave Tm-doped fiber laser at 1.908 µm produced an output of 2.3 W at 2.65 µm with an absorbed pump power slope efficiency of 47.6%, which, to the best of our knowledge, is the highest output power achieved in Cr:CdSe continuous-wave lasers.

SELECTION OF CITATIONS
SEARCH DETAIL
...