Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Molecules ; 29(6)2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38542844

ABSTRACT

The ethanol dehydration process is studied regarding protonic and Ag-loaded chabazite zeolite in advanced FT-IR and UV-vis operando spectroscopic studies with simultaneous mass spectroscopy and gas chromatography analyses of products. The spectroscopic investigation provides information on the species formed on the surface of catalysts, while mass spectrometry and gas chromatography methods identify the desorbed products. These studies are also supported by spectroscopic, chromatographic, and thermogravimetric analyses of coke species formed over the catalyst's surface during ethanol conversion. The Ag-chabazite catalyst shows higher selectivity for ethylene and propylene; the slower formation of coke species; and, thus, a longer lifetime.

2.
Langmuir ; 40(13): 6918-6932, 2024 Apr 02.
Article in English | MEDLINE | ID: mdl-38520471

ABSTRACT

The outcome of the demetalation process of zeolites depends on applied treatment conditions and can lead to the formation of either open or constrained mesopores. The quaternary ammonium cations as pore-directing agents during desilication are responsible for developing constrained mesoporosity with bottleneck entrances. However, higher mesopore surface area and higher accessibility of acid sites are often found for the hierarchical zeolites with constrained mesopores. This is followed by better catalytic activity in the cracking of vacuum gas oil and polymers. For desilication with pure NaOH, a realumination process is observed and an additional acid-wash step is required to reach their full catalytic potential. Thus, this study aims to analyze the acidic and catalytic properties of hierarchical ZSM-5 zeolites of different mesoporosity types employing in situ and operando FT-IR spectroscopic evaluation of polypropylene cracking. The suitability of constrained mesoporosity is studied by assessing the neopentane diffusion in kinetic adsorption, Monte Carlo calculations, and rapid scan FT-IR spectroscopic measurement analyzed by Crank solution for diffusion. The FT-IR spectroscopic results of in situ and operando studies are supported by two-dimensional correlation analysis, allowing to establish the direction of changes seen on spectra and their order.

3.
Sci Rep ; 13(1): 10737, 2023 Jul 03.
Article in English | MEDLINE | ID: mdl-37400511

ABSTRACT

Covalent triazine-based frameworks have attracted much interest recently due to their high surface area and excellent thermal and electrochemical stabilities. This study shows that covalently immobilizing triazine-based structures on spherical carbon nanostructures results in the organization of micro- and mesopores in a three-dimensional manner. We selected the nitrile-functionalized pyrrolo[3,2-b]pyrrole unit to form triazine rings to construct a covalent organic framework. Combining spherical carbon nanostructures with the triazine framework produced a material with unique physicochemical properties, exhibiting the highest specific capacitance value of 638 F g-1 in aqueous acidic solutions. This phenomenon is attributed to many factors. The material exhibits a large surface area, a high content of micropores, a high content of graphitic N, and N-sites with basicity and semi-crystalline character. Thanks to the high structural organization and reproducibility, and remarkably high specific capacitance, these systems are promising materials for use in electrochemistry. For the first time, hybrid systems containing triazine-based frameworks and carbon nano-onions were used as electrodes for supercapacitors.

4.
Nat Commun ; 13(1): 7106, 2022 Nov 19.
Article in English | MEDLINE | ID: mdl-36402761

ABSTRACT

By employing ab initio molecular dynamic simulations, solid-state NMR spectroscopy, and two-dimensional correlation analysis of rapid scan Fourier transform infrared spectroscopy data, a new pathway is proposed for the formation of methyl acetate (MA) via the acylium ion (i.e.,CH3 - C ≡ O+) in 12-membered ring (MR) channel of mordenite by an integrated reaction/diffusion kinetics model, and this route is kinetically and thermodynamically more favorable than the traditional viewpoint in 8MR channel. From perspective of the complete catalytic cycle, the separation of these two reaction zones, i.e., the C-C bond coupling in 8MR channel and MA formation in 12MR channel, effectively avoids aggregation of highly active acetyl species or ketene, thereby reducing undesired carbon deposit production. The synergistic effect of different channels appears to account for the high carbonylation activity in mordenite that has thus far not been fully explained, and this paradigm may rationalize the observed catalytic activity of other reactions.

5.
Int J Mol Sci ; 23(10)2022 May 17.
Article in English | MEDLINE | ID: mdl-35628395

ABSTRACT

The commercially available zeolite HY and its desilicated analogue were subjected to a classical wet impregnation procedure with NH4VO3 to produce catalysts differentiated in acidic and redox properties. Various spectroscopic techniques (in situ probe molecules adsorption and time-resolved propane transformation FT-IR studies, XAS, 51V MAS NMR, and 2D COS UV-vis) were employed to study speciation, local coordination, and reducibility of the vanadium species introduced into the hierarchical faujasite zeolite. The acid-based redox properties of V centres were linked to catalytic activity in the oxidative dehydrogenation of propane. The modification of zeolite via caustic treatment is an effective method of adjusting its basicity-a parameter that plays an important role in the ODH process. The developed mesopore surface ensured the attachment of vanadium species to silanol groups and formation of isolated (SiO)2(HO)V=O and (SiO)3V=O sites or polymeric, highly dispersed forms located in the zeolite micropores. The higher basicity of HYdeSi, due to the presence of the Al-rich shell, aided the activation of the C-H bond leading to a higher selectivity to propene. Its polymerisation and coke formation were inhibited by the lower acid strength of the protonic sites in desilicated zeolite. The Al-rich shell was also beneficial for anchoring V species and thus their reducibility. The operando UV-vis experiments revealed higher reactivity of the bridging oxygens V-O-V over the oxo-group V=O. The (SiO)3V=O species were found to be ineffective in propane oxidation when temperature does not exceed 400 °C.


Subject(s)
Zeolites , Acids , Catalytic Domain , Propane/chemistry , Spectroscopy, Fourier Transform Infrared , Vanadium , Zeolites/chemistry
6.
ACS Appl Mater Interfaces ; 14(5): 6667-6679, 2022 Feb 09.
Article in English | MEDLINE | ID: mdl-35076211

ABSTRACT

Layer-like FAU-type zeolite Y was synthesized by an organosilane-assisted low-temperature hydrothermal method and its catalytic activity was verified in the low-density polyethylene (LDPE) cracking process. The synthesis procedure of high-silica layer-like zeolite Y was based on organosilane as a growth modifier, and for the first time, the seeding step was successfully avoided. The X-ray diffraction and electron microscopy studies, scanning electron microscopy and transmission electron microscopy confirmed the formation of pure FAU structure and zeolite particles of plate-like morphology arranged in the manner of the skeleton of a cuboctahedron. The in situ Fourier transform infrared (FT-IR) spectroscopic studies, low-temperature nitrogen sorption, and electron microscopy results provided detailed information on the obtained layer-like zeolite Y. The acidic and textural properties of layer-like zeolites Y were faced with the catalytic activity and selectivity in the cracking of LDPE. The quantitative assessment of catalyst selectivity performed in FT-IR/GC-MS operando studies pointed out that LDPE cracking over the layer-like material yielded value-added C3-C4 gases and C5-C6 liquid fraction at the expense of C7+ fraction. The detailed analysis of coke residue on the catalyst was also performed by means of FT-IR spectroscopy, thermogravimetric analysis, and thermoprogrammed oxidation coupled with mass spectrometry for the detection of oxidation products. The acidic and textural properties gave a foundation for the catalytic performance and coking of catalysts.

7.
ACS Appl Mater Interfaces ; 13(43): 51628-51642, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34677930

ABSTRACT

Defects are widely present in nanomaterials, and they are recognized as the active sites that tune surface properties in the local region for catalysis. Recently, the theory linking defect structures and catalytic properties of nanocatalysts has been most commonly described. In this study, we prepared boron-doped carbon nano-onions (B-CNOs) by applying an annealing treatment of ultradispersed nanodiamond particles and amorphous boron. These experimental conditions guarantee doping of CNOs with boron atoms in the entire carbon nanostructure, thereby ensuring structural homogeneity. In our research, we discuss the correlations between defective structures of B-CNOs with their catalytic properties toward SO2 and tert-butanol dehydration. We show that there is a close relationship between the catalytic properties of the B-CNOs and the experimental conditions for their formation. It is not only the mass of the substrates used for the formation of B-CNOs that is crucial, that is, the mass ratio of NDs to amorphous B, but also the process, including temperature and gas atmosphere. As it was expected, all B-CNOs demonstrated significant catalytic activity in HSO3- oxidation. However, the subsequent annealing in an air atmosphere diminished their catalytic activity. Unfortunately, no direct relationship between the catalytic activity and the presence of heteroatoms on the B-CNO surface was observed. There was a linear dependence between catalytic activity and Raman reactivity factors for each of the B-CNO materials. In contrast to SO2 oxidation, the B-CNO-a samples showed higher catalytic activity in tert-butanol dehydration due to the presence of Brønsted and Lewis acid sites. The occurence of three types of boron-Lewis sites differing in electron donor properties was confirmed using quantitative infrared spectroscopic measurements of pyridine adsorption.

8.
J Am Chem Soc ; 143(37): 15440-15452, 2021 09 22.
Article in English | MEDLINE | ID: mdl-34478267

ABSTRACT

Neutral ketene is a crucial intermediate during zeolite carbonylation reactions. In this work, the roles of ketene and its derivates (viz., acylium ion and surface acetyl) associated with direct C-C bond coupling during the carbonylation reaction have been theoretically investigated under realistic reaction conditions and further validated by synchrotron radiation X-ray diffraction (SR-XRD) and Fourier transformed infrared (FT-IR) studies. It has been demonstrated that the zeolite confinement effect has significant influence on the formation, stability, and further transformation of ketene. Thus, the evolution and the role of reactive and inhibitive intermediates depend strongly on the framework structure and pore architecture of the zeolite catalysts. Inside side pockets of mordenite (MOR), rapid protonation of ketene occurs to form a metastable acylium ion exclusively, which is favorable toward methyl acetate (MA) and acetic acid (AcOH) formation. By contrast, in 12MR channels of MOR, a relatively longer lifetime was observed for ketene, which tends to accelerate deactivation of zeolite due to coke formation by the dimerization of ketene and further dissociation to diene and alkyne. Thus, we resolve, for the first time, a long-standing debate regarding the genuine role of ketene in zeolite catalysis. It is a paradigm to demonstrate the confinement effect on the formation, fate, and catalytic consequence of the active intermediates in zeolite catalysis.

9.
Molecules ; 25(12)2020 Jun 22.
Article in English | MEDLINE | ID: mdl-32580524

ABSTRACT

An adequately tuned acid wash of hierarchical ZSM-5 zeolites offers a levelling up in the catalytic cracking of low-density polyethylene. Identification of crucial and limiting factors governing the activity of the zeolite was extended with studies about the accessibility of acid sites, nature of the realuminated layer and role of Lewis acid sites. The sequential treatment of a ZSM-5 zeolite offered enhanced activity in low-density polyethylene (LDPE) cracking at low and high conversions, as confirmed by a decrease in the temperatures needed to reach 20% and 80% conversion (T20 and T80, respectively). A linear dependence of the T80 on the coupled IHF (indexed hierarchy factor) and AFB (accessibility factor) highlighted the importance of the textural and acidic parameters in the catalytic cracking of LDPE. Operando FT-IR-GC studies confirmed a higher fraction of short-chain hydrocarbons (C3-C5) in the product distribution of hierarchical catalysts resulting from the effective polymer cracking in easily accessible pores.


Subject(s)
Hydrocarbons/chemistry , Polyethylene/chemistry , Zeolites/chemistry , Catalysis , Porosity , Spectroscopy, Fourier Transform Infrared , Temperature
10.
Molecules ; 25(4)2020 Feb 19.
Article in English | MEDLINE | ID: mdl-32093052

ABSTRACT

Zeolite-based catalysts are globally employed in many industrial processes, such as crude-oil refining and bulk chemical production. In this work, the cracking of low-density polyethylene (LDPE) was thoroughly followed in a FTIR operando study to examine the catalytic efficiency of purely microporous zeolites of various textural characteristics. To provide complementary and valuable information on the catalytic activity of the zeolite studied, the thermogravimetric analysis results were compared with yields of the products generated under operating conditions. The reaction products were analyzed via GC-MS to determine the hydrocarbon chain distribution in terms of paraffin, olefins, and aromatics. The individual impact of textural and acidic parameters on catalytic parameters was assessed. The accumulation of bridging hydroxyls of high strength in the zeolite benefited the decrease in polymer decomposition temperature. Through a strategic comparison of purely microporous zeolites, we showed that the catalytic cracking of LDPE is dominated by the acidic feature inherent to the microporous environment.


Subject(s)
Polyethylene/chemistry , Zeolites/chemistry , Catalysis , Porosity , Spectroscopy, Fourier Transform Infrared
11.
ChemSusChem ; 12(3): 633-638, 2019 Feb 07.
Article in English | MEDLINE | ID: mdl-30520260

ABSTRACT

A new theoretical and practical framework has been developed through operando study of the zeolite catalytic cracking of low-density polyethylene (as a model reaction) under reaction conditions. Results show that microporous ZSM-5 gives rise to less cracking products. Hierarchical ZSM-5 zeolites are more active cracking catalysts, rendering more C2 -C5 hydrocarbons, with a delayed deactivation due to the secondary porosity. This tool in combination with thermogravimetric analysis provides complementary and valuable information for the study, and design of advanced catalysts.

13.
Spectrochim Acta A Mol Biomol Spectrosc ; 192: 464-472, 2018 Mar 05.
Article in English | MEDLINE | ID: mdl-29216600

ABSTRACT

In this work, the role of pore arrangement of 10-ring zeolites ZSM-5, TNU-9 and IM-5 on their catalytic properties in ethanol transformation were investigated. Among all the studied catalysts, the zeolite IM-5, characterized by limited 3-dimensionality, presented the highest conversion of ethanol and the highest yields of diethyl ether (DEE) and ethylene. The least active and selective to ethylene and C3+ products was zeolite TNU-9 with the largest cavities formed on the intersection of 10-ring channels. The catalysts varied, however, in lifetime, and their deactivation followed the order: IM-5>TNU-9>ZSM-5. The processes taking place in the microporous zeolite environment were tracked by IR spectroscopy and analysed by the 2D correlation analysis (2D COS) allowing for an insight into the nature of chemisorbed adducts and transition products of the reaction. The cage dimension was found as a decisive factor influencing the tendency for coke deposition, herein identified as polymethylated benzenes, mainly 1,2,4-trimethyl-benzene.

14.
Dalton Trans ; 46(30): 9934-9950, 2017 Aug 01.
Article in English | MEDLINE | ID: mdl-28726887

ABSTRACT

This study attempts to offer an insight into o-xylene isomerization process in terms of steric constraints of 10-ring zeolites. The zeolites under investigation, i.e. ZSM-5, IM-5 and TNU-9, have purely microporous structures and crystals with the same shape and offer comparable protonic functionality, both in manner of amount and strength of Si(OH)Al groups. Under these conditions, micropore topology is recognised to deliver differentiated catalytic performance of each zeolitic structure. Moreover, 10-ring zeolites of reduced dimensionality, i.e. TNU-10 and ZSM-22, are chosen as reference materials. The 2D COS analysis of IR spectra reveal that interaction and catalytic activity in o-xylene isomerization process are strongly influenced by diffusion of reagents in rigid microporous environment and the formation of intermediate species is characterised by IR bands at 1485 and 1455 cm-1. With a prolonged time of the reaction (15 min), the formation of the latter species is observed for zeolite IM-5 characterised by limited 3-dimensionality. Rapid scan experiments show that in a shorter reaction time (4 min), these intermediate moieties are present for all the structure studied. The intermediate species are believed to originate from arenium ions such as methylbenzenium CH3-C6H5+-CH3 and/or methyl-substituted cycloheptatrienyl ions CH3-C7H7+. Their amount is strictly related to the rigidity of the microporous system: the most spacious environment for o-xylene transformation, e.g. TNU-9, is characterised by the lowest population of intermediates, whereas structures offering sufficiently tight geometry, e.g. TNU-10, can accommodate intermediate species in higher quantities, finally leading to the production of p-xylene with high selectivity.

15.
Dalton Trans ; 44(17): 8031-40, 2015 May 07.
Article in English | MEDLINE | ID: mdl-25831224

ABSTRACT

This work was attempted in order to provide a new and well-established approach for the quantification of Fe(2+) sites in zeolites. The experimental procedure was based on carbon monoxide and nitrogen monoxide sorption in Fe-exchanged ZSM-5 zeolites with different pore hierarchies, which was followed by IR spectroscopy. The values of the absorption coefficients of the respective monocarbonyl Fe(2+)(CO) and mononitrosyl Fe(2+)(NO) IR bands were obtained. In turn, the concentrations of Fe(ii) moieties of various kinds were calculated and discussed with regard to the composition (Si/Al and Fe/Al ratios) of the zeolites studied.

SELECTION OF CITATIONS
SEARCH DETAIL
...