Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 43
Filter
Add more filters










Publication year range
1.
J Food Sci Technol ; 61(6): 1069-1082, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38562595

ABSTRACT

Extraction of bioactive compounds for application in nutraceuticals is gaining popularity. For this, there is a search for low-cost substrates that would make the end product and the process more economical. Mushroom waste (stalk, cap, stem etc.) is one such high valued substrate that has received much attention recently due to its rich reserves of terpenoids, polyphenols, sesquiterpenes, alkaloids, lactones, sterols, antioxidative vitamins, anthocyanidins, glycoproteins and polysaccharides, among others. However, there is a need to identify green and hybrid technologies that could make the bioactive extraction process from these substrates safe, efficient and sustainable. To this effect, many emerging technologies (supercritical fluid, ultrasound-, enzyme- and microwave-assisted extraction) have been explored in the last decade which have shown potential for scale-up with high productivity. This review systematically discusses such technologies highlighting the current challenges faced during waste processing and the research directives needed for further advancements in the field.

2.
Food Chem ; 448: 139084, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38569403

ABSTRACT

Almond protein isolate (API) obtained from almond meal was processed using dynamic high-pressure microfluidisation (0, 40, 80, 120, and 160 MPa pressure; single pass). Microfluidisation caused significant reductions in the particle size and increased absolute zeta potential. SDS-PAGE analysis indicated reduction in band intensity and the complete disappearance of bands beyond 80 MPa. Structural analysis (by circular dichroism, UV-Vis, and intrinsic-fluorescence spectra) of the API revealed disaggregation (up to 80 MPa) and then re-aggregation beyond 80 MPa. Significant increments in protein digestibility (1.16-fold) and the protein digestibility corrected amino acid score (PDCAAS; 1.15-fold) were observed for the API (80 MPa) than control. Furthermore, significant improvements (P < 0.05) in the functional properties were observed, viz., the antioxidant activity, protein solubility, and emulsifying properties. Overall, the results revealed that moderate microfluidisation treatment (80 MPa) is an effective and sustainable technique for enhancing physico-chemical and functional attributes of API, thus potentially enabling its functional food/nutraceuticals application.


Subject(s)
Food Handling , Particle Size , Plant Proteins , Pressure , Prunus dulcis , Solubility , Prunus dulcis/chemistry , Plant Proteins/chemistry , Antioxidants/chemistry
3.
J Food Sci Technol ; 61(3): 444-458, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38327864

ABSTRACT

The Citrus fruits belong to the category where the groups of fruits are recognized to be an admirable repository of bioactive elements and phytochemical constituents, with strong biological potentials. The prominent use of Citrus fruits for nutrition as well as food processing has led to the release of a large amount of waste into the environment and surrounding, and it simultaneously burdens the nature and existence of many organisms including the human population. In order to rectify such consequences, the reuse of food waste from citrus for various advantageous effects. In this regard, the first part of the article primarily focussed on the various strategies available for the extraction of chemical elements from citrus waste and the remaining strand of the article focussed on the various bioactive compounds with special reference to their pharmacological as well as the medicinal benefits and future prospects.

4.
Trop Anim Health Prod ; 56(1): 31, 2024 Jan 04.
Article in English | MEDLINE | ID: mdl-38172456

ABSTRACT

The present study was aimed to evaluate the influence of non-genetic factors on several first lactation and lifetime performance traits and elucidate their genetic parameters in an organized Vrindavani cattle population. Data on eight first-lactation and thirteen lifetime traits were collected on 2400 cows with pedigree records that were reared during 33-year period (1989-2021). The first-lactation traits included age at first calving (AFC), total milk yield (FTMY), standard milk yield (FSMY305), peak yield (FPY), lactation length (FLL), dry period (FDP), service period (FSP) and calving interval (FCI). Whereas, the lifetime traits mainly included total lifetime milk yield (TLMY), total standard milk yield (TSMY), number of lactations completed (NL), total lactation length (TLL), herd life (HL), productive life (PL), average milk yield per day of herd life (TLMY/HL), average milk yield per day of productive life (TLMY/PL), average milk yield per day of productive life (TLMY/TLL). Other lifetime production traits included average service period (ASP), average dry period (ADP), average calving interval (ACI) and unproductive days (UD). The heritability estimates of first-lactation traits ranged between 0.026 and 0.228 and were found to be low for AFC (0.180 ± 0.042), FCI (0.191 ± 0.125), FSMY305 (0.145 ± 0.061), FTMY (0.165 ± 0.048), FDP (0.052 ± 0.049) and FSP (0.026 ± 0.033); however, FLL (0.229 ± 0.044) and FPY (0.202 ± 0.046) showed moderate heritability. Positive phenotypic correlation (p < 0.001) was revealed among FTMY, TLMY, TLL, HL and PL. The AFC produced a significant effect (p < 0.05) on several traits i,e, TLL, TLMY/HL, FSMY305, FPY, TLMY, HL and TLMY/PL. Lower AFC was associated with higher TLMY, TLL and TLMY/HL; while FSMY305, FPY, HL and TLMY/PL were higher in heifers that calved late in their life. The results revealed that AFC may be optimized with first lactation and lifetime traits for this population.


Subject(s)
Lactation , Milk , Cattle/genetics , Animals , Female , Lactation/genetics , Phenotype
5.
J Food Sci Technol ; 60(12): 2990-3001, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37786602

ABSTRACT

Kodo (Paspalum scrobiculatum) and little (Panicum sumatrense) millet grains were utilized to minimize their antinutrient content (phytate and tannin) and maximize their antioxidant activity (DPPH) by studying the effect of ultrasonication time, germination time and temperature using central composite rotatable design. Results revealed the optimum conditions for producing ultrasonicated and germinated kodo and little millet flour of the highest antioxidant activity and lowest antinutrient content (phytate and tannin) by using 30 min for ultrasonication, 72 h for germination at 40 °C. Further, a second order model was developed to describe and predict the effect of process variables on antioxidant activity and antinutrient contents. Extended experiments were carried out under the optimized conditions to validate the developed model. The antioxidant activity obtained was 88.46% RSA and 89.06% RSA for kodo and little millet grain flours, respectively whereas antinutrient content for phytate was 0.165 mol/kg and 0.199 mol/kg and for tannin 2.88 mol/kg and 9.51 mol/kg, for kodo and little millet grain flours, respectively. This study provides useful information about the potential utilization of ultrasonicated and germinated kodo and little millet grain flours for the development of functional foods.

6.
Bioresour Technol ; 382: 129170, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37196748

ABSTRACT

Livestock and poultry wastewater poses a potent risk for environmental pollution accelerating disease load and premature deaths. It is characterized by high chemical oxygen demand, biological oxygen demand, suspended solids, heavy metals, pathogens, and antibiotics, among other contaminants. These contaminants have a negative impact on the quality of soil, groundwater, and air, and is a potential hazard to human health. Depending on the specific characteristics of wastewater, such as the type and concentration of pollutants present; several physical, chemical and biological strategies have been developed for its treatment. This review aims at providing comprehensive overview of the profiling of livestock wastewater from the dairy, swine and poultry sub-sectors along with the biological, physico-chemical, AI-based and integrated treatment methodologies, and valorisation for the generation of value-added products such as bioplastics, biofertilizers, biohydrogen and microalgal-microbial fuel cells. Additionally, future perspectives for efficient and sustainable wastewater treatment are contemplated.


Subject(s)
Livestock , Poultry , Humans , Animals , Swine , Farms , Wastewater , Biological Oxygen Demand Analysis
7.
J Food Sci Technol ; 60(6): 1814-1825, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37187978

ABSTRACT

Chevon Seekh Kabab is a popular meat product of India. However, due to high protein and moisture content it undergoes quick microbial spoilage and oxidative reactions leading to lower shelf life. The combination of chitosan edible film and cinnamon essential oil (CEO) was chosen to remediate this problem because of its antimicrobial and antioxidative effect. Control and chitosan edible film with CEO coated chevon Seekh Kabab samples were stored at 4 °C. The physicochemical (pH, TBARS, TVBN, moisture, colour), microbiological (APC, psychrophilic, coliform and Staphylococcal count) and sensory attributes were evaluated over a 30 days period. The maximum shelf life of 27 days was observed when 2% chitosan edible film with 0.3% CEO was coated over samples. A reduction in moisture, L* value, a* value and sensory scores along with an increase in pH, TVBN, TBARS, b* value and microbiological parameters were observed during the storage period. Reaction kinetics for the physicochemical and microbiological parameters was also established. The physicochemical, microbiological and sensory parameters were within prescribed limits till spoilage in the treated sample. This investigation may aid researchers working on scaling up of processing and preservation of Seekh Kabab.

8.
J Food Sci Technol ; 60(6): 1841-1845, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37187982

ABSTRACT

Determining the slaughter weight of pigs is crucial to the profitability of swine production farms. Unfortunately, in developing countries, the basic infrastructure for weight measurement may not always be available, affecting farmers' income. This study presents a machine learning-based approach to determine the dressed weight of pigs using four morphometric dimensions: paunch girth (PG), heart girth (HG), body length and wither height, which can be measured in situ. Different neural network model structures were constructed taking LM, GDX and BR training algorithms, tansigmoid/logsigmoid hidden layer transfer functions and 5-30 hidden layer neurons (HLNs). Results showed that LM training algorithm with logsigmoidal transfer function and 20 HLNs resulted in 99.8% accuracy in determining the pig dressed weight. Further, the number of morphometric parameters as inputs was gradually reduced and it was found that 99% accuracy can still be achieved using just PG and HG, thereby reducing the measurement time.

9.
Environ Pollut ; 328: 121623, 2023 Jul 01.
Article in English | MEDLINE | ID: mdl-37072107

ABSTRACT

Anthropogenic emissions of CO2 have reached a critical level and the global surface temperature is expected to rise by 1.5 °C between 2030 and 2050. To ameliorate the current global warming scenario, the research community has been struggling to find more economical and innovative solutions for carbon sequestration. Among such techniques, the use of microalgal species such as Chlorella sp., Dunaliella tertiolecta, Spirulina platensis, Desmodesmus sp., and Nannochloropsis sp., among others have shown high carbon tolerance capacity (10-100%) for establishing carbon capture, utilization and storage systems. To make microalgal-based carbon capture more economical, the microalgal biomass (∼2 g/L) can be converted biofuels, pharmaceuticals and nutraceuticals through biorefinery approach with product yield in the range of 60-99.5%. Further, CRISPR-Cas9 has enabled the knockout of specific genes in microalgal species that can be used to generate low pH tolerant strains with high lipid production. Inspite of the emerging developments in pollution control by microalgae, only limited investigations are available on its economic aspects which indicate a production cost of ∼$ 0.5-15/kg microalgal biomass. This review intends to summarize the advancements in different carbon sequestration techniques while highlighting their mechanisms and major research areas that need attention for economical microalgae-based carbon sequestration.


Subject(s)
Chlorella , Microalgae , Carbon Dioxide/analysis , Global Warming , Biomass , Biofuels , Biodegradation, Environmental
10.
Bioresour Technol ; 375: 128826, 2023 May.
Article in English | MEDLINE | ID: mdl-36871700

ABSTRACT

In recent years, the digital transformation of bioprocesses, which focuses on interconnectivity, online monitoring, process automation, artificial intelligence (AI) and machine learning (ML), and real-time data acquisition, has gained considerable attention. AI can systematically analyze and forecast high-dimensional data obtained from the operating dynamics of bioprocess, allowing for precise control and synchronization of the process to improve performance and efficiency. Data-driven bioprocessing is a promising technology for tackling emerging challenges in bioprocesses, such as resource availability, parameter dimensionality, nonlinearity, risk mitigation, and complex metabolisms. This special issue entitled "Machine Learning for Smart Bioprocesses (MLSB-2022)" was conceptualized to incorporate some of the recent advances in applications of emerging tools such as ML and AI in bioprocesses. This VSI: MLSB-2022 contains 23 manuscripts, and summarizes the major findings that can serve as a valuable resource for researchers to learn major advances in applications of ML and AI in bioprocesses.


Subject(s)
Artificial Intelligence , Machine Learning
11.
J Food Sci Technol ; 60(3): 1195-1201, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36908371

ABSTRACT

Spent hen meat is considered as a category of waste generated by the poultry sector which can lead to serious environmental concerns if not disposed and utilized properly. In this work, spent hen meat was hydrolysed by 2% Flavourzyme (6.5 pH, 55 °C) followed by ultrafiltration to produce three peptide fractions with molecular weights > 10 kDa, 5-10 kDa and < 5 kDa. These fractions were evaluated for antioxidant potential, SDS PAGE and amino acid profile. The SDS PAGE profile demonstrated bands in the low molecular weight (< 10 kDa) region. Peptide fractions of < 5 kDa exhibited highest antioxidant activity and, essential as well as hydrophobic amino acid composition than whole hydrolysate and other peptide fractions. Incorporation of the identified hydrolysate fraction in food could improve its shelf stability while serving as a preventive component against human degenerative diseases.

12.
Bioenergy Res ; 16(1): 16-32, 2023.
Article in English | MEDLINE | ID: mdl-35350609

ABSTRACT

Bio-based fuels and chemicals through the biorefinery approach has gained significant interest as an alternative platform for the petroleum-derived processes as these biobased processes are noticed to have positive environmental and societal impacts. Decades of research was involved in understanding the diversity of microorganisms in different habitats that could synthesize various secondary metabolites that have functional potential as fuels, chemicals, nutraceuticals, food ingredients, and many more. Later, due to the substrate-related process economics, the diverse low-value, high-carbon feedstocks like lignocellulosic biomass, industrial byproducts, and waste streams were investigated to have greater potential. Among them, municipal solid wastes can be used as the source of substrates for the production of commercially viable gaseous and liquid fuels, as well as short-chain fattyacids and carboxylic acids. In this work, technologies and processes demanding the production of value-added products were explained in detail to understand and inculcate the value of municipal solid wastes and the economy, and it can provide to the biorefinery aspect.

13.
Food Res Int ; 162(Pt B): 112089, 2022 12.
Article in English | MEDLINE | ID: mdl-36461397

ABSTRACT

Various oxidative enzymes account for the quality degradation of sapodilla (Manilkara achras L.) juice and need to be inactivated through emerging and continuous green pressure processing technology. In this study, pressurization of sapodilla juice was attempted via microfluidization (MF) at pressure range of 10,000-30,000 pound per square inch (psi) with 1-3 passes or cycles. The impact of microfluidization on the activity of polyphenol oxidase (PPO), peroxidase (POD), color, total soluble solid (TSS), viscosity, serum cloudiness along with particle size, and microbial load of sapodilla juice was assessed. Results showed that microfluidization (MF) decreased the residual PPO activity from 100 to 80.78 % and POD activity from 100 to 40.57%. However, TSS (18.81-19.01 %), viscosity (2.64-2.06 cP), serum cloudiness (2.19-1.22 %) and total color change (3.19-18.54) was also significantly affected. Most of these changes were observed due to particle size (PS) reduction that varied from 65.19 to 8.13 µm. Microfluidized juice revealed color improvement at particular MF pressure and pass due to enzyme inactivation. Moreover, lowest microbial load (2.89 Log CFU/ mL) was found at 30,000 psi/3 pass of MF as compared to control sample (unprocessed juice) (7.57 Log CFU/ mL). Consequently, MF can be potential candidate in processing of juices against spoilage.


Subject(s)
Manilkara , Catechol Oxidase , Coloring Agents , Food , Viscosity
14.
Bioresour Technol ; 362: 127870, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36049716

ABSTRACT

Waste derived from the onion processing sector can be harnessed for the production of organic acids, polyphenols, polysachharides, biofuels and pigments. To sustainably utilize onion processing residues, different biorefinery strategies such as enzymatic hydrolysis, fermentation and hydrothermal carbonization have been widely investigated. This review discusses the recent advances in the biorefinery approaches used for valorization of onion processing waste followed by the production of different value-added products from diverse classes of onion waste. The review also highlights the current challenges faced by the bioprocessing sector for the utilization of onion processing waste and perspectives to tackle them.


Subject(s)
Biofuels , Onions , Acids , Biofuels/analysis , Fermentation , Waste Products
15.
Int J Food Microbiol ; 381: 109890, 2022 Nov 16.
Article in English | MEDLINE | ID: mdl-36095867

ABSTRACT

Blueberry (Vaccinium spp.) is one of the five major healthy foods for humans and is recognized as the "king of the world fruit", which has attracted great interest in the phytogenic prebiotics market. Blueberry fruit is favored for its delicious taste and its various functional ingredients (organic acids, phenolics, minerals and vitamins) with multitherapeutic value (antioxidant, anti-inflammatory, anticancer, neuroprotective and vision improvement properties). However, fresh blueberries are highly perishable since they are vulnerable to mechanical damage and microbial decay, resulting in a short shelf life and inevitable subsequent economic losses. Due to the strong seasonal availability and limited storage period of blueberries, their derived bioactive products have emerged as functional foods. Novel food developments that are currently available include blueberry fruit juice, wine, vinegar, jam, dried fruit, pulp powder, colorant and flavoring additives used in cake, biscuit, bread, yogurt, and jelly. This review systematically describes the current status of blueberry fruit as bioactive ingredients and valuable food products with greater nutraceutical health potential of blueberries.


Subject(s)
Blueberry Plants , Acetic Acid , Antioxidants , Fruit , Humans , Powders , Vitamins
16.
Food Res Int ; 160: 111705, 2022 10.
Article in English | MEDLINE | ID: mdl-36076403

ABSTRACT

In the present investigation, novel nano-curcumin enriched milk cream powder (CP) was formulated using microfluidization (at 100 MPa/2 passes) followed by spray drying (at three different temperatures: 150, 170 and 190 °C) with sodium caseinate (N) and gum arabic (G) as encapsulating materials. The effect of processing and encapsulating materials on the powder functionalities, particle size, encapsulation efficiency, morphology, fluorescence properties, bioaccessibility and cytotoxicity were studied. Results showed that NCP (spray dried at 190 °C) had significantly higher yield (68 %), encapsulation efficiency (EE) (93 %), and lower particle size (724 nm) than that of GCP. Fluorescence spectra of the powders revealed characteristic 'blue shift' phenomenon indicating better encapsulation and protection of the nano-curcumin corroborating EE results. SEM images showed distinctive features of NCP and GCP; wherein, NCP had shrivelled and irregular surface as compared to the GCP which exhibited round shape and smooth surface. TEM results confirmed that curcumin particles were in the nano-scale (50-250 nm) for both NCP and GCP. In vitro simulated digestion showed significantly high (88.48 %) curcumin bioaccessibility of NCP plus remarkable inhibition of HepG2 cells; whereas, no cytotoxicity was observed in Caco-2 cells by MTT assay. Formulation's applicability was shown by reconstituting powders as a 'cream spread' wherein high sensory acceptability observed. Sodium caseinate was found to be an excellent delivery vehicle for the fortification of nano-curcumin in the cream powder. To our knowledge, this is the first report of formulating a novel nano-curcumin fortified cream powder which has tremendous potential as a functional food ingredient.


Subject(s)
Curcumin , Animals , Caco-2 Cells , Caseins , Curcumin/pharmacology , Humans , Milk , Powders , Spray Drying
17.
Int J Biol Macromol ; 222(Pt A): 636-651, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-36174856

ABSTRACT

The Chenopodium genus includes >250 species, among which only quinoa, pigweed, djulis, and kaniwa have been explored for starches. Chenopodium is a non-conventional and rich source of starch, which has been found effective in producing different classes of food. Chenopodium starches are characterized by their smaller granule size (0.4-3.5 µm), higher swelling index, shorter/lower gelatinization regions/temperature, good emulsifying properties, and high digestibility, making them suitable for food applications. However, most of the investigations into Chenopodium starches are in the primary stages (isolation, modification, and characterization), except for quinoa. This review comprehensively explores the major developments in Chenopodium starch research, emphasizing isolation, structural composition, functionality, hydrolysis, modification, and application. A critical analysis of the trends, limitations, and scope of these starches for novel food applications has also been provided to promote further scientific advancement in the field.


Subject(s)
Amaranthus , Chenopodium quinoa , Chenopodium , Starch/chemistry , Chenopodium quinoa/chemistry , Temperature , Amylose/chemistry
18.
Bioresour Technol ; 363: 127834, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36029984

ABSTRACT

Microalgae are photosynthetic microbes that can synthesize compounds of therapeutic potential with wide applications in the food, bioprocessing and pharmaceutical sector. Recent research advances have therefore, focused on finding suitable economic substrates for the sustainable cultivation of microalgae. Among such substrates, food derived waste specifically from the starch, meat, dairy, brewery, oil and fruit and vegetable processing industries has gained popularity but poses numerous challenges. Pretreatment, dilution of waste water supernatants, mixing of different food waste streams, utilizing two-stage cultivation and other biorefinery approaches have been intensively explored for multifold improvement in microalgal biomass recovery from food waste. This review discusses the advances and challenges associated with cultivation of microalgae on food waste. The review suggests that there is a need to standardize different waste substrates in terms of general composition, genetically engineered microalgal strains, tackling process scalability issues, controlling wastewater toxicity and establishing a waste transportation chain.


Subject(s)
Microalgae , Refuse Disposal , Biofuels , Biomass , Food , Pharmaceutical Preparations , Starch , Wastewater/chemistry
20.
Environ Pollut ; 308: 119703, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35787420

ABSTRACT

Phytases are a group of digestive enzymes which are commonly used as feed enzymes. These enzymes are used exogenously in the feeds of monogastric animals thereby it improves the digestibility of phosphorous and thus reduces the negative impact of inorganic P excretion on the environment. Even though these enzymes are widely distributed in many life forms, microorganisms are the most preferred and potential source of phytase. Despite the extensive availability of the phytase-producing microbial consortia, only a few microorganisms have been known to be exploited at industrial level. The high costs of the enzyme along with the incapability to survive high temperatures followed by the poor storage stability are noted to be the bottleneck in the commercialization of enzymes. For this reason, besides the conventional fermentation approaches, the applicability of cloning, expression studies and genetic engineering has been implemented for the past few years to accomplish the abovesaid benefits. The site-directed mutagenesis as well as knocking out have also validated their prominent role in microbe-based phytase production with enhanced levels. The present review provides detailed information on recent insights on the modification of phytases through heterologous expression and protein engineering to make thermostable and protease-resistant phytases.


Subject(s)
6-Phytase , Environmental Pollutants , 6-Phytase/genetics , 6-Phytase/metabolism , Animal Feed , Animals , Enzyme Stability , Protein Engineering
SELECTION OF CITATIONS
SEARCH DETAIL
...