Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 241(3): 1193-1209, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009929

ABSTRACT

The Arabidopsis thaliana transcription factor BRANCHED1 (BRC1) plays a pivotal role in the control of shoot branching as it integrates environmental and endogenous signals that influence axillary bud growth. Despite its remarkable activity as a growth inhibitor, the mechanisms by which BRC1 promotes bud dormancy are largely unknown. We determined the genome-wide BRC1 binding sites in vivo and combined these with transcriptomic data and gene co-expression analyses to identify bona fide BRC1 direct targets. Next, we integrated multi-omics data to infer the BRC1 gene regulatory network (GRN) and used graph theory techniques to find network motifs that control the GRN dynamics. We generated an open online tool to interrogate this network. A group of BRC1 target genes encoding transcription factors (BTFs) orchestrate this intricate transcriptional network enriched in abscisic acid-related components. Promoter::ß-GLUCURONIDASE transgenic lines confirmed that BTFs are expressed in axillary buds. Transient co-expression assays and studies in planta using mutant lines validated the role of BTFs in modulating the GRN and promoting bud dormancy. This knowledge provides access to the developmental mechanisms that regulate shoot branching and helps identify candidate genes to use as tools to adapt plant architecture and crop production to ever-changing environmental conditions.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Gene Regulatory Networks , Transcription Factors/genetics , Transcription Factors/metabolism , Promoter Regions, Genetic , Gene Expression Regulation, Plant , Plant Shoots/metabolism
2.
Curr Opin Plant Biol ; 41: 102-109, 2018 02.
Article in English | MEDLINE | ID: mdl-29125947

ABSTRACT

Plant shoot branching patterns determine leaf, flower and fruit production, and thus reproductive success and yield. Branch primordia, or axillary buds, arise in the axils of leaves and their decision to either grow or enter dormancy is coordinated at the whole plant level. Comparisons of transcriptional profiles of axillary buds entering dormancy have identified a shared set of responses that closely resemble a Low Energy Syndrome. This syndrome is aimed at saving carbon use to support essential maintenance functions, rather than additional growth, and involves growth arrest (thus dormancy), metabolic reprogramming and hormone signalling. This response is widely conserved in distantly related woody and herbaceous species, and not only underlies but also precedes the growth-to-dormancy transition induced in buds by different stimuli.


Subject(s)
Arabidopsis/growth & development , Plant Growth Regulators/metabolism , Signal Transduction , Abscisic Acid/metabolism , Arabidopsis/genetics , Arabidopsis/physiology , Flowers/genetics , Flowers/growth & development , Flowers/physiology , Fruit/genetics , Fruit/growth & development , Fruit/physiology , Plant Leaves/genetics , Plant Leaves/growth & development , Plant Leaves/physiology , Plant Shoots/genetics , Plant Shoots/growth & development , Plant Shoots/physiology
3.
Front Plant Sci ; 8: 788, 2017.
Article in English | MEDLINE | ID: mdl-28588590

ABSTRACT

Plant shoot systems give rise to characteristic above-ground plant architectures. Shoots are formed from axillary meristems and buds, whose growth and development is modulated by systemic and local signals. These cues convey information about nutrient and water availability, light quality, sink/source organ activity and other variables that determine the timeliness and competence to maintain development of new shoots. This information is translated into a local response, in meristems and buds, of growth or quiescence. Although some key genes involved in the onset of bud latency have been identified, the gene regulatory networks (GRNs) controlled by these genes are not well defined. Moreover, it has not been determined whether bud dormancy induced by environmental cues, such as a low red-to-far-red light ratio, shares genetic mechanisms with bud latency induced by other causes, such as apical dominance or a short-day photoperiod. Furthermore, the evolution and conservation of these GRNs throughout angiosperms is not well established. We have reanalyzed public transcriptomic datasets that compare quiescent and active axillary buds of Arabidopsis, with datasets of axillary buds of the woody species Vitis vinifera (grapevine) and apical buds of Populus tremula x Populus alba (poplar) during the bud growth-to-dormancy transition. Our aim was to identify potentially common GRNs induced during the process that leads to bud para-, eco- and endodormancy. In Arabidopsis buds that are entering eco- or paradormancy, we have identified four induced interrelated GRNs that correspond to a carbon (C) starvation syndrome, typical of tissues undergoing low C supply. This response is also detectable in poplar and grapevine buds before and during the transition to dormancy. In all eukaryotes, C-limiting conditions are coupled to growth arrest and latency like that observed in dormant axillary buds. Bud dormancy might thus be partly a consequence of the underlying C starvation syndrome triggered by environmental and endogenous cues that anticipate or signal conditions unfavorable for sustained shoot growth.

4.
Proc Natl Acad Sci U S A ; 114(2): E245-E254, 2017 01 10.
Article in English | MEDLINE | ID: mdl-28028241

ABSTRACT

Shoot-branching patterns determine key aspects of plant life and are important targets for crop breeding. However, we are still largely ignorant of the genetic networks controlling locally the most important decision during branch development: whether the axillary bud, or branch primordium, grows out to give a lateral shoot or remains dormant. Here we show that, inside the buds, the TEOSINTE BRANCHED1, CYCLOIDEA, PCF (TCP) transcription factor BRANCHED1 (BRC1) binds to and positively regulates the transcription of three related Homeodomain leucine zipper protein (HD-ZIP)-encoding genes: HOMEOBOX PROTEIN 21 (HB21), HOMEOBOX PROTEIN 40 (HB40), and HOMEOBOX PROTEIN 53 (HB53). These three genes, together with BRC1, enhance 9-CIS-EPOXICAROTENOID DIOXIGENASE 3 (NCED3) expression, lead to abscisic acid accumulation, and trigger hormone response, thus causing suppression of bud development. This TCP/HD-ZIP genetic module seems to be conserved in dicot and monocotyledonous species to prevent branching under light-limiting conditions.


Subject(s)
Abscisic Acid/metabolism , Arabidopsis Proteins/genetics , Arabidopsis/metabolism , Dioxygenases/genetics , Plant Proteins/genetics , Plant Shoots/metabolism , Transcription Factors/genetics , Arabidopsis/genetics , Arabidopsis Proteins/metabolism , Plant Shoots/genetics , Signal Transduction , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...