Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(2)2024 Jan 18.
Article in English | MEDLINE | ID: mdl-38256229

ABSTRACT

Tumor necrosis factor alpha (TNF-α) is a cytokine that is responsible for many processes associated with immune response and inflammation. It is involved in the development of an antiviral response to many virus infections. This factor was shown to be activated in influenza A virus infection, which enhances production of other cytokines. The overexpression of these cytokines can lead to a cytokine storm. To study the role of TNF-α in the development of pathologies associated with viral infection, we generated a Tnfa knockout mouse strain. We demonstrated that these mice were characterized by a significant increase in the number of viral genomes compared to that in the parental strain, but the amount of live virus did not differ. A histopathology of the lungs in the genetically modified animals was significantly lower in terms of interalveolar septal infiltration. The generated model may be used to further study pathological processes in viral infections.


Subject(s)
Influenza A virus , Orthomyxoviridae Infections , Tumor Necrosis Factor-alpha , Animals , Mice , Cytokines/genetics , Mice, Knockout , Tumor Necrosis Factor-alpha/genetics , Orthomyxoviridae Infections/pathology
2.
Int J Mol Sci ; 24(24)2023 Dec 12.
Article in English | MEDLINE | ID: mdl-38139225

ABSTRACT

Group-specific component macrophage-activating factor (GcMAF) is the vitamin D3-binding protein (DBP) deglycosylated at Thr420. The protein is believed to exhibit a wide range of therapeutic properties associated with the activation of macrophagal immunity. An original method for GcMAF production, DBP conversion to GcMAF, and the analysis of the activating potency of GcMAF was developed in this study. Data unveiling the molecular causes of macrophage activation were obtained. GcMAF was found to interact with three CLEC10A derivatives having molecular weights of 29 kDa, 63 kDa, and 65 kDa. GcMAF interacts with high-molecular-weight derivatives via Ca2+-dependent receptor engagement. Binding to the 65 kDa or 63 kDa derivative determines the pro- and anti-inflammatory direction of cytokine mRNA expression: 65 kDa-pro-inflammatory (TNF-α, IL-1ß) and 63 kDa-anti-inflammatory (TGF-ß, IL-10). No Ca2+ ions are required for the interaction with the canonical 29 kDa CLEC10A. Both forms, DBP protein and GcMAF, bind to the 29 kDa CLEC10A. This interaction is characterized by the stochastic mRNA synthesis of the analyzed cytokines. Ex vivo experiments have demonstrated that when there is an excess of GcMAF ligand, CLEC10A forms aggregate, and the mRNA synthesis of analyzed cytokines is inhibited. A schematic diagram of the presumable mechanism of interaction between the CLEC10A derivatives and GcMAF is provided. The principles and elements of standardizing the GcMAF preparation are elaborated.


Subject(s)
Macrophage-Activating Factors , Macrophages , Vitamin D-Binding Protein , Anti-Inflammatory Agents , Macrophage-Activating Factors/metabolism , Macrophages/metabolism , RNA, Messenger , Humans , Vitamin D-Binding Protein/metabolism
3.
Microbiol Spectr ; 11(3): e0385522, 2023 06 15.
Article in English | MEDLINE | ID: mdl-37154690

ABSTRACT

Now more than ever researchers provide more and more evidence that it is necessary to develop an ecologically friendly approach to pest control. This is reflected in a sharp increase in the value of the biological insecticide market in recent decades. In our study, we found a virus strain belonging to the genus Cypovirus (Reoviridae); the strain was isolated from Dendrolimus sibiricus, possessing attractive features as a candidate for mass production of biological agents for lepidopteran-pest control. We describe the morphological, molecular, and ecological features of the new Cypovirus strain. This strain was found to be highly virulent to D. sibiricus (the half-lethal dose is 25 occlusion bodies per second-instar larva) and to have a relatively wide host range (infecting representatives of five families of Lepidoptera: Erebidae, Sphingidae, Pieridae, Noctuidae, and Lasiocampidae). The virus strain showed a strong interaction with a nontoxic adjuvant (optical brightener), which decreased the lethal dose for both main and alternative hosts, decreased lethal time, and may expand the host range. Moreover, we demonstrated that the insecticidal features were preserved after passaging through the most economically suitable host. By providing strong arguments for the possible use of this strain in pest control, we call on virologists, pest control specialists, and molecular biologists to give more attention to the Cypovirus genus, which may lead to new insights in the field of pest control research and may provide significant advantages to compare with baculoviruses and Bacillus thuringiensis products which are nowadays main source of bioinsecticides. IMPORTANCE In this article, we describe a newly discovered cypovirus strain that displays features ideally suited for the development of a modern biological insecticide: high potency, relatively broad host range, true regulating effect, flexible production (possibility to choose host species for production), interaction with enhancing adjuvants, and ecologically friendly. Based on an alignment of CPV genomes, we suggest that the enhanced host range of this new strain is the sequence of evolutionary events that occurred after coinfections involving different CPV species within the same host. These findings suggest that we need to positively reconsider CPVs as prospective agents as biocontrol products.


Subject(s)
Insecticides , Moths , Reoviridae , Animals , Insecticides/pharmacology , Prospective Studies , Pest Control
4.
Int J Mol Sci ; 24(5)2023 Mar 02.
Article in English | MEDLINE | ID: mdl-36902311

ABSTRACT

It is well-established that double-stranded RNA (dsRNA) exhibits noticeable radioprotective and radiotherapeutic effects. The experiments conducted in this study directly demonstrated that dsRNA was delivered into the cell in its native form and that it induced hematopoietic progenitor proliferation. The 68 bp synthetic dsRNA labeled with 6-carboxyfluorescein (FAM) was internalized into mouse hematopoietic progenitors, c-Kit+ (a marker of long-term hematopoietic stem cells) cells and CD34+ (a marker of short-term hematopoietic stem cells and multipotent progenitors) cells. Treating bone marrow cells with dsRNA stimulated the growth of colonies, mainly cells of the granulocyte-macrophage lineage. A total of 0.8% of Krebs-2 cells internalized FAM-dsRNA and were simultaneously CD34+ cells. dsRNA in its native state was delivered into the cell, where it was present without any signs of processing. dsRNA binding to a cell was independent of cell charge. dsRNA internalization was related to the receptor-mediated process that requires energy from ATP. Synthetic dsRNA did not degrade in the bloodstream for at least 2 h. Hematopoietic precursors that had captured dsRNA reinfused into the bloodstream and populated the bone marrow and spleen. This study, for the first time, directly proved that synthetic dsRNA is internalized into a eukaryotic cell via a natural mechanism.


Subject(s)
Hematopoietic Stem Cells , RNA, Double-Stranded , Animals , Mice , RNA, Double-Stranded/pharmacology , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Antigens, CD34/metabolism , Bone Marrow Cells/metabolism , Cells, Cultured
5.
Viruses ; 15(1)2023 01 11.
Article in English | MEDLINE | ID: mdl-36680245

ABSTRACT

BACKGROUND: Since most of the modern human population has no anti-smallpox immunity, it is extremely important to develop and implement effective drugs for the treatment of smallpox and other orthopoxvirus infections. The objective of this study is to determine the main characteristics of the chemical substance NIOCH-14 and its safety and bioavailability in the body of laboratory animals. METHODS: The safety of NIOCH-14 upon single- or multiple-dose intragastric administration was assessed according to its effect on the main hematological and pathomorphological parameters of laboratory mice and rats. In order to evaluate the pharmacokinetic parameters of NIOCH-14 administered orally, a concentration of ST-246, the active metabolite of NIOCH-14, in mouse blood and organs was determined by tandem mass spectrometry and liquid chromatography. RESULTS: The intragastric administration of NIOCH-14 at a dose of 5 g/kg body weight caused neither death nor signs of intoxication in mice. The intragastric administration of NIOCH-14 to mice and rats at doses of 50 and 150 µg/g body weight either as a single dose or once daily during 30 days did not cause animal death or critical changes in hematological parameters and the microstructure of internal organs. The tissue availability of NIOCH-14 administered orally to the mice at a dose of 50 µg/g body weight, which was calculated according to concentrations of its active metabolite ST-246 for the lungs, liver, kidney, brain, and spleen, was 100, 69.6, 63.3, 26.8 and 20.3%, respectively. The absolute bioavailability of the NIOCH-14 administered orally to mice at a dose of 50 µg/g body weight was 22.8%. CONCLUSION: Along with the previously determined efficacy against orthopoxviruses, including the smallpox virus, the substance NIOCH-14 was shown to be safe and bioavailable in laboratory animal experiments.


Subject(s)
Smallpox , Variola virus , Humans , Rats , Mice , Animals , Pharmaceutical Preparations , Administration, Oral , Animals, Laboratory
6.
Microorganisms ; 11(1)2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36677472

ABSTRACT

In this study, we investigated the features of the infectious process by simulating co-infection with SARS-CoV-2 and human adenovirus type 5 (HAdV-5) or influenza A virus (IAV) in vitro and in vivo. The determination of infectious activity of viruses and digital PCR demonstrated that during simultaneous and sequential HAdV-5 followed by SARS-CoV-2 infection in vitro and in vivo, the HAdV-5 infection does not interfere with replication of SARS-CoV-2. The hamsters co-infected and mono-infected with SARS-CoV-2 exhibited nearly identical viral titers and viral loads of SARS-CoV-2 in the lungs. The hamsters and ferrets co-infected by SARS-CoV-2- and IAV demonstrated more pronounced clinical manifestations than mono-infected animals. Additionally, the lung histological data illustrate that HAdV-5 or IAV and SARS-CoV-2 co-infection induces more severe pathological changes in the lungs than mono-infection. The expression of several genes specific to interferon and cytokine signaling pathways in the lungs of co-infected hamsters was more upregulated compared to single infected with SARS-CoV-2 animals. Thus, co-infection with HAdV-5 or IAV and SARS-CoV-2 leads to more severe pulmonary disease in animals.

7.
Int J Mol Sci ; 23(24)2022 Dec 13.
Article in English | MEDLINE | ID: mdl-36555446

ABSTRACT

An ability of poorly differentiated cells of different genesis, including tumor stem-like cells (TSCs), to internalize extracellular double-stranded DNA (dsDNA) fragments was revealed in our studies. Using the models of Krebs-2 murine ascites carcinoma and EBV-induced human B-cell lymphoma culture, we demonstrated that dsDNA internalization into the cell consists of several mechanistically distinct phases. The primary contact with cell membrane factors is determined by electrostatic interactions. Firm contacts with cell envelope proteins are then formed, followed by internalization into the cell of the complex formed between the factor and the dsDNA probe bound to it. The key binding sites were found to be the heparin-binding domains, which are constituents of various cell surface proteins of TSCs-either the C1q domain, the collagen-binding domain, or domains of positively charged amino acids. These results imply that the interaction between extracellular dsDNA fragments and the cell, as well as their internalization, took place with the involvement of glycocalyx components (proteoglycans/glycoproteins (PGs/GPs) and glycosylphosphatidylinositol-anchored proteins (GPI-APs)) and the system of scavenger receptors (SRs), which are characteristic of TSCs and form functional clusters of cell surface proteins in TSCs. The key provisions of the concept characterizing the principle of organization of the "group-specific" cell surface factors of TSCs of various geneses were formulated. These factors belong to three protein clusters: GPs/PGs, GIP-APs, and SRs. For TSCs of different tumors, these clusters were found to be represented by different members with homotypic functions corresponding to the general function of the cluster to which they belong.


Subject(s)
Carcinoma, Krebs 2 , Neoplastic Stem Cells , Humans , Animals , Mice , Neoplastic Stem Cells/metabolism , DNA/metabolism , Glycoproteins/metabolism , Cell Membrane/metabolism , Carcinoma, Krebs 2/pathology , Membrane Proteins/metabolism
8.
Pharmaceutics ; 14(11)2022 Oct 22.
Article in English | MEDLINE | ID: mdl-36365078

ABSTRACT

Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc. In this study, we determined the optimal parameters for delivery DNA vaccine by electroporation using the BEX CO device. BALB/c mice were used as a model. Plasmid DNA phMGFP was intramuscular (I/M) injected into the quadriceps muscle of the left hind leg of animals using insulin syringes, followed by EP. As a result of the experiments, the following EP parameters were determined: direct and reverse polarity rectangular DC current in three pulses, 12 V voltage for 30 ms and 950 ms intervals, with a current limit of 45 mA. The selected protocol induced a low level of injury and provided a high level of GFP expression. The chosen protocol was used to evaluate the immunogenicity of the DNA vaccine encoding the receptor-binding domain (RBD) of the SARS-CoV-2 protein (pVAXrbd) injected by EP. It was shown that the delivery of pVAXrbd via EP significantly enhanced both specific humoral and cellular immune responses compared to the intramuscular injection of the DNA vaccine.

9.
Front Genet ; 13: 954395, 2022.
Article in English | MEDLINE | ID: mdl-36159968

ABSTRACT

Stem-like tumor cells of ascites carcinoma Krebs-2 and Epstein-Barr virus-induced B-lymphoma were shown to possess the innate capability of binding and internalizing the TAMRA-labeled double-stranded DNA (dsDNA) probe. The process of binding and internalizing is rather complicated and composed of the following successive stages: 1) initiating electrostatic interaction and contact of a negatively charged dsDNA molecule with a positively charged molecule(s) on the surface of a stem-like tumor cell; 2) binding of the dsDNA probe to a tumor stem cell surface protein(s) via the formation of a strong chemical/molecular bond; and 3) the very internalization of dsDNA into the cell. Binding of DNA to cell surface proteins is determined by the presence of heparin/polyanion-binding sites within the protein structure, which can be competitively blocked by heparin and/or dextran sulfate, wherein heparin blocks only the binding, while dextran sulfate abrogates both binding and internalization. The abrogation of internalization by dextran sulfate implies the role of scavenger receptors in this process. Cells were shown to uptake DNA in amounts constituting ∼0.008% of the haploid genome. Inhibitors of caveolae-dependent internalization abrogate the DNA uptake in Krebs-2 cells, and inhibitors of the clathrin/caveolar mechanism block the internalization in B-lymphoma cells. In the present report, it is shown for the first time that in contrast to the majority of committed tumor cells, stem-like tumor cells of Krebs-2 and B-lymphoma carry a general positive charge on their surface.

10.
Int J Mol Sci ; 23(15)2022 Jul 22.
Article in English | MEDLINE | ID: mdl-35897653

ABSTRACT

The main problem related to the studies focusing on group-specific component protein-derived macrophage-activating factor (GcMAF) is the lack of clarity about changes occurring in different types of macrophages and related changes in their properties under the effect of GcMAF in various clinical conditions. We analyzed the antitumor therapeutic properties of GcMAF in a Lewis carcinoma model in two clinical conditions: untreated tumor lesion and tumor resorption after exposure to Karanahan therapy. GcMAF is formed during site-specific deglycosylation of vitamin D3 binding protein (DBP). DBP was obtained from the blood of healthy donors using affinity chromatography on a column with covalently bound actin. GcMAF-related factor (GcMAF-RF) was converted in a mixture with induced lymphocytes through the cellular enzymatic pathway. The obtained GcMAF-RF activates murine peritoneal macrophages (p < 0.05), induces functional properties of dendritic cells (p < 0.05) and promotes in vitro polarization of human M0 macrophages to M1 macrophages (p < 0.01). Treatment of whole blood cells with GcMAF-RF results in active production of both pro- and anti-inflammatory cytokines. It is shown that macrophage activation by GcMAF-RF is inhibited by tumor-secreted factors. In order to identify the specific antitumor effect of GcMAF-RF-activated macrophages, an approach to primary reduction of humoral suppressor activity of the tumor using the Karanahan therapy followed by macrophage activation in the tumor-associated stroma (TAS) was proposed. A prominent additive effect of GcMAF-RF, which enhances the primary immune response activation by the Karanahan therapy, was shown in the model of murine Lewis carcinoma. Inhibition of the suppressive effect of TAS is the main condition required for the manifestation of the antitumor effect of GcMAF-RF. When properly applied in combination with any chemotherapy, significantly reducing the humoral immune response at the advanced tumor site, GcMAF-RF is a promising antitumor therapeutic agent that additively destroys the pro-tumor properties of macrophages of the tumor stroma.


Subject(s)
Carcinoma , Macrophage-Activating Factors , Vitamin D-Binding Protein , Animals , Blood Proteins/metabolism , Carcinoma/drug therapy , Humans , Macrophage Activation , Macrophage-Activating Factors/metabolism , Mice , Vitamin D-Binding Protein/metabolism
11.
Pathol Oncol Res ; 28: 1610180, 2022.
Article in English | MEDLINE | ID: mdl-35693632

ABSTRACT

Background and Aims: A new technology based on the chronometric administration of cyclophosphamide and complex composite double-stranded DNA-based compound, which is scheduled in strict dependence on interstrand crosslinks repair timing, and named "Karanahan", has been developed. Being applied, this technology results in the eradication of tumor-initiating stem cells and full-scale apoptosis of committed tumor cells. In the present study, the efficacy of this novel approach has been estimated in the model of Lewis carcinoma. Methods: To determine the basic indicative parameters for the approach, the duration of DNA repair in tumor cells, as well as their distribution along the cell cycle, have been assessed. Injections were done into one or both tumors in femoral region of the engrafted mice in accordance with the developed regimen. Four series of experiments were carried out at different periods of time. The content of poorly differentiated CD34+/TAMRA+ cells in the bone marrow and peripheral blood has been determined. Immunostaining followed by the flow cytometry was used to analyze the subpopulations of immune cells. Results: The high antitumor efficacy of the new technology against the developed experimental Lewis carcinoma was shown. It was found that the therapy efficacy depended on the number of tumor growth sites, seasonal and annual peculiarities. In some experiments, a long-term remission has been reached in 70% of animals with a single tumor and in 60% with two tumors. In mice with two developed grafts, mobilization capabilities of both poorly differentiated hematopoietic cells of the host and tumor stem-like cells decrease significantly. Being applied, this new technology was shown to activate a specific immune response. There is an increase in the number of NK cell populations in the blood, tumor, and spleen, killer T cells and T helper cells in the tumor and spleen, CD11b+Ly-6C+ and CD11b+Ly-6G+ cells in the tumor. A population of mature dendritic cells is found in the tumor. Conclusion: The performed experiments indicate the efficacy of the Karanahan approach against incurable Lewis carcinoma. Thus, the discussed therapy is a new approach for treating experimental neoplasms, which has a potential as a personalized anti-tumor therapeutic approach in humans.


Subject(s)
Carcinoma , DNA , Animals , Antigens, CD34 , Carcinoma/pathology , Cyclophosphamide/pharmacology , DNA/genetics , Humans , Mice , Mice, Inbred C57BL , Neoplastic Stem Cells/pathology
12.
Cancer Biol Med ; 2021 Jul 14.
Article in English | MEDLINE | ID: mdl-34259424

ABSTRACT

OBJECTIVE: Glioma is a highly invasive tumor, frequently disposed in essential areas of the brain, which makes its surgical excision extremely difficult; meanwhile adjuvant therapy remains quite ineffective. METHODS: In the current report, a new therapeutic approach in curing malignant neoplasms has been performed on the U87 human glioblastoma model. This approach, termed "Karanahan", is aimed at the eradication of cancer stem cells (CSCs), which were recently shown to be capable of internalizing fragments of extracellular double-stranded DNA. After being internalized, these fragments interfere in the process of repairing interstrand cross-links caused by exposure to appropriate cytostatics, and such an interference results either in elimination of CSCs or in the loss of their tumorigenic potency. Implementation of the approach requires a scheduled administration of cytostatic and complex composite double-stranded DNA preparation. RESULTS: U87 cells treated in vitro in accordance with the Karanahan approach completely lost their tumorigenicity and produced no grafts upon intracerebral transplantation into immunodeficient mice. In SCID mice with developed subcutaneous grafts, the treatment resulted in reliable slowing down of tumor growth rate (P < 0.05). In the experiment with intracerebral transplantation of U87 cells followed by surgical excision of the developed graft and subsequent therapeutic treatment, the Karanahan approach was shown to reliably slow down the tumor growth rate and increase the median survival of the mice twofold relative to the control. CONCLUSIONS: The effectiveness of the Karanahan approach has been demonstrated both in vitro and in vivo in treating developed subcutaneous grafts as well as orthotopic grafts after surgical excision of the tumor.

13.
Front Mol Biosci ; 8: 821506, 2021.
Article in English | MEDLINE | ID: mdl-35118120

ABSTRACT

The novel coronavirus disease COVID-19 has become one of the most socially significant infections. One of the main models for COVID-19 pathogenesis study and anti-COVID-19 drug development is laboratory animals sensitive to the virus. Herein, we report SARS-CoV-2 infection in novel transgenic mice conditionally expressing human ACE2 (hACE2), with a focus on viral distribution after intranasal inoculation. Transgenic mice carrying hACE2 under the floxed STOP cassette [(hACE2-LoxP(STOP)] were mated with two types of Cre-ERT2 strains (UBC-Cre and Rosa-Cre). The resulting offspring with temporal control of transgene expression were treated with tamoxifen to induce the removal of the floxed STOP cassette, which prevented hACE2 expression. Before and after intranasal inoculation, the mice were weighed and clinically examined. On Days 5 and 10, the mice were sacrificed for isolation of internal organs and the further assessment of SARS-CoV-2 distribution. Intranasal SARS-CoV-2 inoculation in hACE2-LoxP(STOP)×UBC-Cre offspring resulted in weight loss and death in 6 out of 8 mice. Immunostaining and focus formation assays revealed the most significant viral load in the lung, brain, heart and intestine samples. In contrast, hACE2-LoxP(STOP) × Rosa-Cre offspring easily tolerated the infection, and SARS-CoV-2 was detected only in the brain and lungs, whereas other studied tissues had null or negligible levels of the virus. Histological examination revealed severe alterations in the lungs, and mild changes were observed in the brain tissues. Notably, no changes were observed in mice without tamoxifen treatment. Thus, this novel murine model with the Cre-dependent activation of hACE2 provides a useful and safe tool for COVID-19 studies.

14.
Int J Radiat Biol ; 96(9): 1173-1191, 2020 09.
Article in English | MEDLINE | ID: mdl-32658564

ABSTRACT

THE PURPOSE OF THE ARTICLE: Protection from ionizing radiation is the most important component in the curing malignant neoplasms, servicing atomic reactors, and resolving the situations associated with uncontrolled radioactive pollutions. In this regard, discovering new effective radioprotectors as well as novel principles of protecting living organisms from high-dose radiation is the most important factor, determining the new approaches in medical and technical usage of radiation. MATERIALS AND METHODS: Experimental animals were irradiated on the γ-emitter (Cs137) with a dose of 9.4 Gy. Radioprotective properties of several agents (total RNA, single-stranded RNA, double-stranded RNA and B-190) were estimated by the survival/death rates of experimental animals within 30-90 d. Pathomorphological examination of internal organs end electron microscope assay was done on days 9-12 after irradiation. Cloning and other molecular procedures were performed accordingly to commonly accepted protocols. For assessment of the internalization of labeled nucleic acid, bone marrow cells were incubated with double-stranded RNA labeled with 6-FAM fluorescent dye. Cells with internalized double-stranded RNA were assayed using Axio Imager M1 microscope. In the other experiment, bone marrow cells after incubation with double-stranded RNA were stained with Cy5-labeled anti-CD34 antibodies and assayed using Axioskop 2 microscope. RESULTS: In this study, several biological features of the radioprotective action of double-stranded RNA are characterized. It was shown that 160 µg of the double-stranded RNA per mouse protect experimental animals from the absolutely lethal dose of γ-radiation of 9.4 Gy. In different experiments, 80-100% of irradiated animals survive and live until their natural death. Radioprotective properties of double-stranded RNA were found to be independent on its sequence, but strictly dependent on its double-stranded form. Moreover, double-stranded RNA must have 'open' ends of the molecule to exert its radioprotective activity. CONCLUSIONS: Experiments indicate that radioprotective effect of double-stranded RNA is tightly bound to its internalization into hematopoietic stem cells, which further repopulate the spleen parenchyma of irradiated mice. Actively proliferating progenitors form the splenic colonies, which further serve as the basis for restoration of hematopoiesis and immune function and determine the survival of animals received the lethal dose of radiation.


Subject(s)
RNA, Double-Stranded/pharmacology , RNA, Fungal/pharmacology , Radiation-Protective Agents/pharmacology , Saccharomyces cerevisiae/genetics , Animals , Dose-Response Relationship, Radiation , Gamma Rays/adverse effects , Mice , Time Factors
15.
Anticancer Res ; 40(2): 795-805, 2020 02.
Article in English | MEDLINE | ID: mdl-32014922

ABSTRACT

BACKGROUND/AIM: We previously have described the "3+1" tumors cure approach consisting of individual time schedule of cyclophosphamide and dsDNA preparation administrations. The aim of the study was to adapt the "3+1" approach based on eradication of cancer stem cells to the model of murine ascitic cyclophosphamide-resistant lymphosarcoma (RLS). MATERIALS AND METHODS: Adaptation of the "3+1" approach includes the identification of the timing to disrupt the tumorigenic potential of a certain tumor. RESULTS: The proposed therapeutic scheme allowed complete reduction of primary RLS ascites in experimental animals. However, reduction of primary ascites due to the complementary action of cyclophosphamide and dsDNA was inevitably followed by the development of a secondary one, most likely arising from a solid carcinomatous formation in the peritoneal wall. CONCLUSION: The "3+1" approach resulted in the elimination of cancer stem cells, and, as a consequence, in the complete reduction of RLS ascites.


Subject(s)
Lymphoma, Non-Hodgkin/drug therapy , Neoplastic Stem Cells/metabolism , Animals , Lymphoma, Non-Hodgkin/pathology , Mice
16.
Anticancer Res ; 39(11): 6073-6086, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31704835

ABSTRACT

BACKGROUND/AIM: Oncolytic adenoviruses are promising therapeutic agents against both the bulk of tumor cells and cancer stem cells. The present study intended to test the oncolytic capability of adenovirus serotype 6 (Ad6), which has a lower seroprevalence and hepatotoxicity relatively to adenovirus 5 (Ad5), against the glioblastoma and its cancer stem cells. MATERIALS AND METHODS: Oncolytic efficacy of Ad6 was compared to widespread Ad5 both in vitro and in vivo, using the U87 and U251 human glioblastoma cell lines and subcutaneously transplanted U87 cells in SCID mice, respectively. RESULTS: Ad6 had a dose-dependent cytotoxicity toward glioblastoma cells in vitro and its intratumoral injections lead to a significant (p<0.05) decrease in volume of U87 xenografts, similarly to Ad5. Based on the innate capability of glioblastoma cancer stem cells to internalize a fluorescent-labeled double-stranded DNA probe, the spatial localization of these cells was estimated and it was shown that the number of cancer stem cells tended to decrease under adenovirus therapy as compared to the control group. CONCLUSION: Ad6 was shown to be a promising agent for treating glioblastomas.


Subject(s)
Adenoviruses, Human/genetics , Glioblastoma/therapy , Neoplastic Stem Cells/metabolism , Oncolytic Virotherapy , Virus Replication , Adenoviruses, Human/classification , Animals , Apoptosis , Cell Proliferation , Glioblastoma/genetics , Glioblastoma/pathology , Humans , Mice , Mice, SCID , Neoplastic Stem Cells/pathology , Neoplastic Stem Cells/virology , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
17.
Eur Cytokine Netw ; 30(2): 43-58, 2019 Jun 01.
Article in English | MEDLINE | ID: mdl-31486403

ABSTRACT

The present study demonstrates that monocyte-derived dendritic cells (moDCs) produced in vitro using a GM-CSF and IFN-α differentiation protocol encompass a rare (∼5%) subpopulation of cells showing classical dendritic cell morphology and capable of natural internalization of extracellular self-DNA. We established that DEFB, HMGB1, LL-37 and RAGE antigens, which mediate the process of DNA internalization, are expressed on the surface of moDCs similar to plasmacytoid dendritic cells. However, in constrast to the latter subpopulation, these cells do not produce interleukin (IL)-37. Nonetheless, the process of DNA internalization was not in direct relation to the presence of the above antigens on the surface of these cells. Dendritic cells were sorted into total and non-DNA-internalizing populations and cytokine production was analyzed at 24-48 hours post-DNA treatment. We show that massive secretion of cytokines by dendritic cells is associated with the dsDNA-internalizing subpopulation. A total pool of IFN-moDCs secrete pro-inflammatory "first-wave" cytokines (IL-2, IL-6, IL-8, TNF-α) at both 24 and 48 hours time points. The anti-inflammatory cytokines IL-4 and IL-10 were found to be modestly induced, whereas GM-CSF, G-CSF, and IFN-γ production was strongly induced. Treatment of moDCs with dsDNA results in the up-regulated transcription of IFN-α, IFN-ß, IFN-γ, IL-8, IL-10, and VEGF by 6 hours. Combined dsDNA + chloroquine treatment has a synergistic effect on transcription of only one of the genes tested, with the pro-inflammatory cytokine IFN-ß displaying the strongest fold induction by 24 hours.


Subject(s)
DNA/metabolism , Dendritic Cells/cytology , Endocytosis , Extracellular Space/metabolism , Monocytes/cytology , Antigens, Neoplasm/metabolism , Antimicrobial Cationic Peptides/metabolism , Chloroquine/pharmacology , Cytokines/metabolism , DNA Probes/metabolism , Dendritic Cells/drug effects , Endocytosis/drug effects , Female , HMGB1 Protein/metabolism , Humans , Interferons/pharmacology , Mitogen-Activated Protein Kinases/metabolism , Monocytes/drug effects , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rhodamines/metabolism , beta-Defensins/metabolism , Cathelicidins
18.
Cancer Cell Int ; 19: 120, 2019.
Article in English | MEDLINE | ID: mdl-31080361

ABSTRACT

BACKGROUND: We have characterized the human cell line arised from the Epstein-Barr virus (EBV) positive multiple myeloma aspirate subjected to the long-term cultivation. This cell line has acquired the ability to form free-floating spheres and to produce a xenograft upon transplantation into NOD/SCID mice. METHODS: Cells from both in vitro culture and developed xenografts were investigated with a number of analytical approaches, including pathomorphological analysis, FISH analysis, and analysis of the surface antigens and of the VDJ locus rearrangement. RESULTS: The obtained results, as well as the confirmed presence of EBV, testify that both biological systems are derived from B-cells, which, in turn, is a progeny of the EBV-transformed B-cellular clone that supplanted the primordial multiple myeloma cells. Next we assessed whether cells that (i) were constantly present in vitro in the investigated cell line, (ii) were among the sphere-forming cells, and (iii) were capable of internalizing a fluorescent TAMRA-labeled DNA probe (TAMRA+ cells) belonged to one of the three types of undifferentiated bone marrow cells of a multiple myeloma patient: CD34+ hematopoietic stem cells, CD90+ mesenchymal stem cells, and clonotypic multiple myeloma cell. CONCLUSION: TAMRA+ cells were shown to constitute the fourth independent subpopulation of undifferentiated bone marrow cells of the multiple myeloma patient. We have demonstrated the formation of ectopic contacts between TAMRA+ cells and cells of other types in culture, in particular with CD90+ mesenchymal stem cells, followed by the transfer of some TAMRA+ cell material into the contacted cell.

19.
Ultrastruct Pathol ; 43(1): 56-65, 2019.
Article in English | MEDLINE | ID: mdl-30758240

ABSTRACT

Electron-microscopic analysis of the ultrastructure of the Krebs-2 carcinoma ascites cells in the first 90 min immediately after their exposure to fragmented double-stranded DNA has been performed. Morphological attributes of the treated cancer cells indicate the induction in these cells of destructive processes of presumably apoptotic type. The predominance of dystrophic-destructive changes in cells after the addition of DNA is supposed to be a consequence of the disturbance in metabolic processes caused by the experimental action.


Subject(s)
Carcinoma, Krebs 2/ultrastructure , Cell Membrane/ultrastructure , Cytoplasm/ultrastructure , DNA/ultrastructure , Animals , Apoptosis/physiology , Ascites , DNA/metabolism , Mice , Microscopy, Electron/methods
20.
Front Genet ; 9: 544, 2018.
Article in English | MEDLINE | ID: mdl-30505319

ABSTRACT

A functional analysis of 167 genes overexpressed in Krebs-2 tumor initiating cells was performed. In the first part of the study, the genes were analyzed for their belonging to one or more of the three groups, which represent the three major phenotypic manifestation of malignancy of cancer cells, namely (1) proliferative self-sufficiency, (2) invasive growth and metastasis, and (3) multiple drug resistance. 96 genes out of 167 were identified as possible contributors to at least one of these fundamental properties. It was also found that substantial part of these genes are also known as genes responsible for formation and/or maintenance of the stemness of normal pluri-/multipotent stem cells. These results suggest that the malignancy is simply the ability to maintain the stem cell specific genes expression profile, and, as a consequence, the stemness itself regardless of the controlling effect of stem niches. In the second part of the study, three stress factors combined into the single concept of "generalized cellular stress," which are assumed to activate the expression of these genes, were defined. In addition, possible mechanisms for such activation were identified. The data obtained suggest the existence of a mechanism for the de novo formation of a pluripotent/stem phenotype in the subpopulation of "committed" tumor cells.

SELECTION OF CITATIONS
SEARCH DETAIL
...