Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 14(7): 999-1008, 2023 Jul 13.
Article in English | MEDLINE | ID: mdl-37465302

ABSTRACT

Several commercially available and newly synthesized riluzole analogs were evaluated in vitro as voltage-gated skeletal muscle sodium-channel blockers. Data obtained from the patch-clamp technique demonstrated that potency is well correlated with lipophilicity and the introduction of a protonatable amino function in the benzothiazole 2-position enhances the use-dependent behavior. The most interesting compound, the 2-piperazine analog of riluzole (14), although slightly less potent than the parent compound in the patch-clamp assay as well as in an in vitro model of myotonia, showed greater use-dependent Nav1.4 blocking activity. Docking studies allowed the identification of the key interactions that 14 makes with the amino acids of the local anesthetic binding site within the pore of the channel. The reported results pave the way for the identification of novel compounds useful in the treatment of cell excitability disorders.

2.
Cells ; 11(16)2022 08 18.
Article in English | MEDLINE | ID: mdl-36010642

ABSTRACT

Skeletal muscle tissue has the important function of supporting and defending the organism. It is the largest apparatus in the human body, and its function is important for contraction and movements. In addition, it is involved in the regulation of protein synthesis and degradation. In fact, inhibition of protein synthesis and/or activation of catabolism determines a pathological condition called muscle atrophy. Muscle atrophy is a reduction in muscle mass resulting in a partial or complete loss of function. It has been established that many physiopathological conditions can cause a reduction in muscle mass. Nevertheless, it is not well known the molecular mechanisms and signaling processes causing this dramatic event. There are multiple concomitant processes involved in muscle atrophy. In fact, the gene transcription of some factors, oxidative stress mechanisms, and the alteration of ion transport through specific ion channels may contribute to muscle function impairment. In this review, we focused on the molecular mechanisms responsible for muscle damage and potential drugs to be used to alleviate this disabling condition.


Subject(s)
Hindlimb Suspension , Muscular Atrophy , Hindlimb Suspension/physiology , Humans , Ion Channels/metabolism , Metabolic Networks and Pathways , Muscle, Skeletal/metabolism , Muscular Atrophy/pathology
3.
Cells ; 11(3)2022 01 25.
Article in English | MEDLINE | ID: mdl-35159225

ABSTRACT

Amyotrophic Lateral Sclerosis is a neurodegenerative disease caused by progressive loss of motor neurons, which severely compromises skeletal muscle function. Evidence shows that muscle may act as a molecular powerhouse, whose final signals generate in patients a progressive loss of voluntary muscle function and weakness leading to paralysis. This pathology is the result of a complex cascade of events that involves a crosstalk among motor neurons, glia, and muscles, and evolves through the action of converging toxic mechanisms. In fact, mitochondrial dysfunction, which leads to oxidative stress, is one of the mechanisms causing cell death. It is a common denominator for the two existing forms of the disease: sporadic and familial. Other factors include excitotoxicity, inflammation, and protein aggregation. Currently, there are limited cures. The only approved drug for therapy is riluzole, that modestly prolongs survival, with edaravone now waiting for new clinical trial aimed to clarify its efficacy. Thus, there is a need of effective treatments to reverse the damage in this devastating pathology. Many drugs have been already tested in clinical trials and are currently under investigation. This review summarizes the already tested drugs aimed at restoring muscle-nerve cross-talk and on new treatment options targeting this tissue.


Subject(s)
Amyotrophic Lateral Sclerosis , Neurodegenerative Diseases , Amyotrophic Lateral Sclerosis/metabolism , Humans , Ion Channels , Muscle, Skeletal/metabolism , Neurodegenerative Diseases/pathology , Riluzole/pharmacology , Riluzole/therapeutic use
4.
Exp Neurol ; 342: 113758, 2021 08.
Article in English | MEDLINE | ID: mdl-33991525

ABSTRACT

To get insight into the mechanism of action of carbonic anhydrase inhibitors (CAI) in neuromuscular disorders, we investigated effects of dichlorphenamide (DCP) and acetazolamide (ACTZ) on ClC-1 chloride channels and skeletal muscle excitability. We performed patch-clamp experiments to test drugs on chloride currents in HEK293T cells transfected with hClC-1. Using the two-intracellular microelectrode technique in current-clamp mode, we measured the effects of drugs on the resting chloride conductance and action potential properties of sarcolemma in rat and mouse skeletal muscle fibers. Using BCECF dye fluorometry, we measured the effects of ACTZ on intracellular pH in single rat muscle fibers. Similarly to ACTZ, DCP (100 µM) increased hClC-1 chloride currents in HEK cells, because of the negative shift of the open probability voltage dependence and the slowing of deactivation kinetics. Bendroflumethiazide (BFT, 100 µM), structurally related to DCP but lacking activity on carbonic anhydrase, had little effects on chloride currents. In isolated rat muscle fibers, 50-100 µM of ACTZ or DCP, but not BFT, induced a ~ 20% increase of the resting chloride conductance. ACTZ reduced action potential firing in mouse muscle fibers. ACTZ (100 µM) reduced intracellular pH to 6.8 in rat muscle fibers. These results suggest that carbonic anhydrase inhibitors can reduce muscle excitability by increasing ClC-1 channel activity, probably through intracellular acidification. Such a mechanism may contribute in part to the clinical effects of these drugs in myotonia and other muscle excitability disorders.


Subject(s)
Carbonic Anhydrase Inhibitors/pharmacology , Chloride Channels/metabolism , Muscular Diseases/metabolism , Sarcolemma/metabolism , Animals , Carbonic Anhydrase Inhibitors/therapeutic use , Dichlorphenamide/pharmacology , Dichlorphenamide/therapeutic use , HEK293 Cells , Humans , Membrane Potentials/drug effects , Membrane Potentials/physiology , Mice , Mice, Inbred C57BL , Muscular Diseases/drug therapy , Rats , Rats, Wistar , Sarcolemma/drug effects
5.
Int J Mol Sci ; 22(4)2021 Feb 19.
Article in English | MEDLINE | ID: mdl-33669797

ABSTRACT

Statins are the most prescribed and effective drugs to treat cardiovascular diseases (CVD). Nevertheless, these drugs can be responsible for skeletal muscle toxicity which leads to reduced compliance. The discontinuation of therapy increases the incidence of CVD. Thus, it is essential to assess the risk. In fact, many studies have been performed at preclinical and clinical level to investigate pathophysiological mechanisms and clinical implications of statin myotoxicity. Consequently, new toxicological aspects and new biomarkers have arisen. Indeed, these drugs may affect gene transcription and ion transport and contribute to muscle function impairment. Identifying a marker of toxicity is important to prevent or to cure statin induced myopathy while assuring the right therapy for hypercholesterolemia and counteracting CVD. In this review we focused on the mechanisms of muscle damage discovered in preclinical and clinical studies and highlighted the pathological situations in which statin therapy should be avoided. In this context, preventive or substitutive therapies should also be evaluated.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Muscular Diseases/chemically induced , Translational Research, Biomedical , Animals , Biomarkers/metabolism , Drug Interactions , Humans , Muscular Diseases/genetics , Risk Factors
6.
Exp Neurol ; 328: 113287, 2020 06.
Article in English | MEDLINE | ID: mdl-32205118

ABSTRACT

The antiarrhythmic sodium-channel blocker mexiletine is used to treat patients with myotonia. However, around 30% of patients do not benefit from mexiletine due to poor tolerability or suboptimal response. Safinamide is an add-on therapy to levodopa for Parkinson's disease. In addition to MAOB inhibition, safinamide inhibits neuronal sodium channels, conferring anticonvulsant activity in models of epilepsy. Here, we investigated the effects of safinamide on skeletal muscle hNav1.4 sodium channels and in models of myotonia, in-vitro and in-vivo. Using patch-clamp, we showed that safinamide reversibly inhibited sodium currents in HEK293T cells transfected with hNav1.4. At the holding potential (hp) of -120 mV, the half-maximum inhibitory concentrations (IC50) were 160 and 33 µM at stimulation frequencies of 0.1 and 10 Hz, respectively. The calculated affinity constants of safinamide were dependent on channel state: 420 µM for closed channels and 9 µM for fast-inactivated channels. The p.F1586C mutation in hNav1.4 greatly impaired safinamide inhibition, suggesting that the drug binds to the local anesthetic receptor site in the channel pore. In a condition mimicking myotonia, i.e. hp. of -90 mV and 50-Hz stimulation, safinamide inhibited INa with an IC50 of 6 µM, being two-fold more potent than mexiletine. Using the two-intracellular microelectrodes current-clamp method, action potential firing was recorded in vitro in rat skeletal muscle fibers in presence of the chloride channel blocker, 9-anthracene carboxylic acid (9-AC), to increase excitability. Safinamide counteracted muscle fiber hyperexcitability with an IC50 of 13 µM. In vivo, oral safinamide was tested in the rat model of myotonia. In this model, intraperitoneal injection of 9-AC greatly increased the time of righting reflex (TRR) due to development of muscle stiffness. Safinamide counteracted 9-AC induced TRR increase with an ED50 of 1.2 mg/kg, which is 7 times lower than that previously determined for mexiletine. In conclusion, safinamide is a potent voltage and frequency dependent blocker of skeletal muscle sodium channels. Accordingly, the drug was able to counteract abnormal muscle hyperexcitability induced by 9-AC, both in vitro and in vivo. Thus, this study suggests that safinamide may have potential in treating myotonia and warrants further preclinical and human studies to fully evaluate this possibility.


Subject(s)
Alanine/analogs & derivatives , Benzylamines/pharmacology , Muscle, Skeletal/drug effects , Myotonia , NAV1.4 Voltage-Gated Sodium Channel/drug effects , Action Potentials/drug effects , Alanine/pharmacology , Animals , HEK293 Cells , Humans , Male , Rats , Rats, Wistar
7.
Sci Rep ; 9(1): 3185, 2019 02 28.
Article in English | MEDLINE | ID: mdl-30816241

ABSTRACT

The discovery of pathogenetic mechanisms is essential to identify new therapeutic approaches in Amyotrophic Lateral Sclerosis (ALS). Here we investigated the role of the most important ion channels in skeletal muscle of an ALS animal model (MLC/SOD1G93A) carrying a mutated SOD1 exclusively in this tissue, avoiding motor-neuron involvement. Ion channels are fundamental proteins for muscle function, and also to sustain neuromuscular junction and nerve integrity. By a multivariate statistical analysis, using machine learning algorithms, we identified the discriminant genes in MLC/SOD1G93A mice. Surprisingly, the expression of ClC-1 chloride channel, present only in skeletal muscle, was reduced. Also, the expression of Protein Kinase-C, known to control ClC-1 activity, was increased, causing its inhibition. The functional characterization confirmed the reduction of ClC-1 activity, leading to hyperexcitability and impaired relaxation. The increased expression of ion channel coupled AMPA-receptor may contribute to sustained depolarization and functional impairment. Also, the decreased expression of irisin, a muscle-secreted peptide protecting brain function, may disturb muscle-nerve connection. Interestingly, the in-vitro application of chelerythrine or acetazolamide, restored ClC-1 activity and sarcolemma hyperexcitability in these mice. These findings show that ion channel function impairment in skeletal muscle may lead to motor-neuron increased vulnerability, and opens the possibility to investigate on new compounds as promising therapy.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , Chloride Channels/metabolism , Muscle, Skeletal/metabolism , Superoxide Dismutase-1 , Animals , Disease Models, Animal , Fibronectins/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Muscle, Skeletal/pathology , Receptors, AMPA/metabolism , Superoxide Dismutase-1/genetics , Superoxide Dismutase-1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...