Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Spectrosc ; 76(9): 1051-1067, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35668608

ABSTRACT

Comprehensive mineralogical and petrographic studies require analytical methods capable to report the distribution of major to trace elements within crystals in order to unravel their formation conditions and subsequent evolution. Additionally, the investigation of transition elements (e.g., Ti, V, Cr, Mn, Fe, and Zn) is essential for the comprehension of substitution processes within colored minerals. This study is conducted on a zoned kyanite crystal from a deformed quartz vein found within garnet-kyanite-biotite-hematite-plagioclase±staurolite±sillimanite paragneiss of Thassos Island, Greece. Herein, we show the efficiency of combining conventional, for example, cathodoluminescence, electron probe microanalysis (EPMA), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and new methods, for example, micro-laser-induced breakdown spectroscopy (µLIBS), micro-X-ray fluorescence (µXRF), and Raman spectroscopy, to determine the chemical and crystallographic features of minerals. The simple chemistry of this crystal offers an ideal case to compare and valuate the potential of combined spectroscopy techniques to analyze minerals. We demonstrate that µLIBS and µXRF are perfectly adapted to perform multi-element imaging of major to trace elements down to the ppm level within a pluricentimetric crystal (2.3 x 0.5 cm) prior to quantitative analyses. We also highlight the benefit of cathodoluminescence and Raman mapping in the investigation of crystallographic features within minerals. The multispectroscopic approach enabled us to correlate growth stages of kyanite with the polymetamorphic history of the sample. Our results also highlight the spatial dependence of Ti for the generation of blue zonation by Fe2+-Ti4+ substitutions with Al3+.

2.
Phys Chem Chem Phys ; 23(14): 8767-8777, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33876035

ABSTRACT

The relationships between the frequency shift of the ν1 stretching bands of CH4 and N2 with pressure (or density) and composition have been previously provided in the literature as reliable parameters for accurate empirical barometers and densimeters for the direct determination of the pressure or density of gas mixtures. However, the latter results still remain a pure description of the experimental data without any interpretation of the physical mechanisms hidden behind the variation trend of the observed peak position. The present paper is devoted to interpreting the origin of the pressure-induced vibrational frequency shifts of the ν1 stretching bands of CH4 and N2 within CH4-CO2, N2-CO2 and CH4-N2 binary mixtures at the molecular level. Two different theoretical models (i.e., the Lennard-Jones 6-12 potential approximation - LJ, and the generalized perturbed hard-sphere fluid - PHF) are used to intuitively and qualitatively assess the variation trend as well as the magnitude of the frequency shift of the CH4 and N2ν1 bands for an in-depth understanding. Thereby, the contribution of the attractive and repulsive solvation-mean forces to the variation of the Raman frequency shift as a function of pressure and composition is assessed. A predictive model of the variation trend of the frequency shift of the CH4ν1 band as a function of pressure (up to 3000 bars), density and composition within CH4-N2 and CH4-CO2 binary mixtures is then provided.

3.
Anal Chem ; 91(22): 14359-14367, 2019 Nov 19.
Article in English | MEDLINE | ID: mdl-31621287

ABSTRACT

Quantitative analysis of gases by Raman spectroscopy is based on relative Raman scattering cross sections (RRSCS) and the evolution of different spectral parameters (peak position, peak area, peak intensity, etc.). However, most of the calibration data were established at low pressure (low density) and without evaluating the effect of the composition. Using these data may lead to considerable errors, especially when applied to gas mixtures at high pressure as found in natural fluid inclusions. The aim of this study is to reevaluate the RRSCS of CO2 and to establish new calibration data based on the variation of CO2 Fermi diad splitting as a function of pressure (density) and composition over a pressure range of 5-600 bar at 22 and 32 °C. A high-pressure optical cell system (HPOC) and a heating-cooling stage were used for Raman in situ analyses at controlled PTX conditions. Our experimental results show that the RRSCS of CO2 varies slightly with pressure but can be considered constant over the studied pressure range. It can be used to measure the proportion of CO2 in gas mixtures with an uncertainty of about ±0.5 mol%. Different polynomial equations were provided to calculate pressure and density of CO2-N2 gas mixtures with an uncertainty of ±20 bar or 0.01 g·cm-3. A comparison of PVTX properties of natural CO2-N2 fluid inclusions hosted in quartz from the Central Alps (Switzerland) obtained by Raman measurement and as derived from phase transition temperatures by microthermometry experiments shows comparable values.

SELECTION OF CITATIONS
SEARCH DETAIL
...